Skip to main content
Log in

A Numerical-Analytic Method for Describing and Estimating Input and Output Parameters of a Multidimensional Dynamical Object: Part I

  • COMPUTATIONAL AND DATA ACQUISITION SYSTEMS
  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

The paper develops a method for describing and estimating the state of a multidimensional dynamical object including the numerical-analytical representation of the general solution to the differential equation for the dynamical object and its measurable output, accounting for the domain of admissibility of time values and initial condition and of the uncertainty parameters in the right-hand side of the equation. The required quality of representation is achieved by using the family of previously constructed high-precision reference integral curves (of the needed size) and the principle of smooth dependence of solution and measured cooordinates in the given domain of admissibility for a wide class of dynamical objects. The estimate of method errors is given and the recommendations for the choice of its main parameters are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. Yu. G. Bulychev, A. G. Kondrashov, and P. Yu. Radu, ‘‘Identification of dynamic objects using a family of experimental supporting integral curves,’’ Optoelectron., Instrum. Data Process. 55, 81–92 (2019). https://doi.org/10.3103/S8756699019010138

    Article  ADS  Google Scholar 

  2. Yu. G. Bulychev, ‘‘A method of integral support curves for solving the Cauchy problem for ordinary differential equations,’’ USSR Comput. Math. Math. Phys. 28 (5), 130–136 (1988). https://doi.org/10.1016/0041-5553(88)90021-3

    Article  MathSciNet  MATH  Google Scholar 

  3. Yu. G. Bulychev and A. V. Eliseev, ‘‘Computational scheme for invariantly unbiased estimation of linear operators in a given class,’’ Comput. Math. Math. Phys. 48, 549–560 (2008). https://doi.org/10.1134/S0965542508040040

    Article  MathSciNet  MATH  Google Scholar 

  4. B. F. Zhdanyuk, Principles for the Statistical Processing of Path Measurements (Sovetskoe Radio, Moscow, 1978).

    Google Scholar 

  5. Yu. G. Bulychev and A. P. Manin, Mathematical Aspects of Determining the Motion of Flying Vehicles (Mashinostroenie, Moscow, 2000).

    Google Scholar 

  6. Yu. G. Bulychev, V. V. Vasil’ev, R. V. Dzhugan, S. S. Kukushkin, A. P. Manin, S. V. Matsykin, I. G. Nasenkov, A. Yu. Potyupkin, and D. M. Chelakhov, Information and Measuring Systems for Field Tests of Complex Technical Facilities, Ed. by A. P. Manin and V. V. Vasil’ev (Mashinostroenie Polet, Moscow, 2016).

    Google Scholar 

  7. V. Yu. Bulychev, Yu. G. Bulychev, S. S. Ivakina, and I. G. Nasenkov, ‘‘Classification of passive location invariants and their use,’’ J. Comput. Syst. Sci. Int. 54, 905–915 (2015). https://doi.org/10.1134/S1064230715060040

    Article  MathSciNet  MATH  Google Scholar 

  8. A. N. Tikhonov, A. B. Vasil’eva, and A. B. Sveshnikov, Differential Equations (Springer-Verlag, Berlin, 1985).

    Book  Google Scholar 

  9. V. N. Brandin and G. N. Razorenov, Determination of Trajectories of Space Vehicles (Mashinostroenie, Moscow, 1978).

    Google Scholar 

  10. L. Ljung, ‘‘On accuracy of model in system identification,’’ Tekh. Kibern., No. 6. 55–64 (1992).

  11. K. I. Babenko, Foundations of Numerical Analysis (Nauka, Moscow, 1986).

    MATH  Google Scholar 

  12. V. V. Ivanov, Methods of Computer Calculations (Naukova Dumka, Kiev, 1986).

    Google Scholar 

  13. N. S. Bakhvalov, N. P. Zhidkov, and G. M. Kobel’kov, Numerical Methods (BINOM Laboratoriya Znanii, Moscow, 2008).

    MATH  Google Scholar 

  14. V. N. Brandin, A. A. Vasil’ev, and S. T. Khudyakov, Foundations of Experimental Space Ballistics (Mashinostroenie, Moscow, 1974).

    Google Scholar 

  15. A. A. Krasovskii, ‘‘Theory of science and status of the control theory,’’ Autom. Remote Control 61, 537–553 (2000).

    MathSciNet  Google Scholar 

  16. L. M. Vorob’ev, Rocket Flight Theory (Mashinostroenie, Moscow, 1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. G. Bulychev.

Additional information

Translated by E. Oborin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulychev, Y.G., Kondrashov, A.G., Radu, P.Y. et al. A Numerical-Analytic Method for Describing and Estimating Input and Output Parameters of a Multidimensional Dynamical Object: Part I. Optoelectron.Instrument.Proc. 56, 269–279 (2020). https://doi.org/10.3103/S8756699020030036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699020030036

Keywords:

Navigation