Skip to main content
Log in

PID Controller Design for a Second-Order Nonlinear Plant

  • Automation Systems in Scientific Research and Industry
  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

A procedure for designing PID controllers for the class of second-order nonlinear non-stationary plants is proposed. The proportional and differential components of the controller are transferred to the system feedback channel to reduce possible control jumps. It is shown that the presence of a special fast-response differentiating device in the system generates fast processes against the background of slow working processes, which are identified using the motion separation method. The controller designed on this basis ensures invariance of the system under external uncontrolled disturbances as well as under a change in the plant parameters. The results of numerical simulation of the system in MATLAB illustrate the basic properties of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. S. Schei, “Automatic Tuning of PID Controllers Based on Transfer Function Estimation,” Automatica 30 (12), 1983–1989 (1994).

    Article  Google Scholar 

  2. V. V. Denisenko, “PID Controllers: Principles of Construction and Modification,” Sovremennye Tekhnologii Avtomatizatsii, No. 4, 66–74 (2006).

    Google Scholar 

  3. M. Schleicher, Automatic Control Technique for Practitioners (JUMO, Moscow, 2006) [in Russian].

    Google Scholar 

  4. R. Dorf and R. Bishop, Modern Control Systems (Prentice Hall, 2001; Laboratoriya Bazovykh Zhanii, 2002).

    Google Scholar 

  5. S. Skogestad, “Simple Analytic Rules for Model Reduction and PID Controller Tuning,” J. Process Contr. 13 (4), 291–309 (2003).

    Article  MathSciNet  Google Scholar 

  6. K. H. Ang, G. Chong, and Y. Li, “PID Control System Analysis, Design, and Technology,” IEEE Trans. Control Syst. Technol. 4 (13), 559–576 (2005).

    Google Scholar 

  7. A. A. Sidorova and A. M. Malyshenko, “Analysis of the Effectiveness of Automatic Tuning Algorithms for Adaptive Industrial PID Controllers,” Izv. TPU 318 (5), 110–115 (2011).

    Google Scholar 

  8. E. F. Nikulin, Fundamentals of the Theory of Automatic Control. Frequency Methods for System Analysis and Design (BKhV-Petersburg, St. Petersburg, 2004) [in Russian].

    Google Scholar 

  9. S. V. Efimov, S. V. Zamyatin, and S. A. Gaivoronskii, “PID Controller Design Taking into Account the Location of Zeros and Poles of an Automatic Control System,” Izv. TPU 317 (5), 102–107 (2010).

    Google Scholar 

  10. Q.-G. Wang, Z. Zhang, K. J. Astrom, and L. S. Chek, “Guaranteed Dominant Pole Placement with PID Controllers,” J. Process Control. 19 (2), 349–352 (2009).

    Article  Google Scholar 

  11. G. A. Frantsuzova, V. A. Zhmud, and A. S. Vostrikov, “Possibilities of Typical Controllers for Low Order Nonlinear Non-Stationary Plants,” Stud. Syst., Decision Control. 199, 527–539 (2019).

    Article  Google Scholar 

  12. V. A. Zhmud, L. V. Dimitrov, A. V. Taichenachev, and V. M. Semibalamut, “Calculation of PID-Controller for MISO System with the Method of Numerical Optimization,” in Proc. of the Intern. Siberian Conf. on Control and Communications (SIBCON), Astana, Kazakhstan, 29–30 June, 2017, pp. 670–676.

    Google Scholar 

  13. A. S. Vostrikov, “Controller Synthesis for Automatic Control Systems: State and Prospects,” Avtometriya 46 (2), 3–19 (2010) [Optoelectron., Instrum. Data Process. 46 (2), 107–119 (2010)].

    Google Scholar 

  14. N. S. Zemtsov and G. A. Frantsuzova, “Design of a PID Controller for a Once-Through Boiler Control System,” Mekhatronika, Avtomatizatsiya, Upravlenie. 16 (9), 631–636 (2015).

    Article  Google Scholar 

  15. A. G. Aleksandrov and M. V. Palenov, “Status and Development Prospects of Adaptive PID Controllers,” Avtomatika i Telemekhanika, No. 2, 16–30 (2014).

    Google Scholar 

  16. V. D. Yurkevich, “MIMO Tracking PI/PID Controller Design for Nonlinear Systems Based on Singular Perturbation Technique,” IFAC Proceedings Volumes 48 (22), 760–765 (2015).

    Google Scholar 

  17. G. A. Frantsuzova, “PI2D-Controllers Synthesis for Nonlinear Nonstationary Plants,” in Proc. of the XIV Intern. Scientific-Technical Conf. on Actual Problems of Electronic Instrument Engineering (APEIE 2018), Novosibirsk, Russia, 2–6 Oct., 2018, Vol. 1, pp. 212–216.

    Article  Google Scholar 

  18. A. S. Vostrikov and D. A. Frantsuzova, Theory of Automatic Control (Yurait, Moscow, 2017) [in Russian].

    Google Scholar 

  19. A. S. Vostrikov and D. A. Frantsuzova, “Synthesis of PID Controllers for Nonlinear Nonstationary Plants,” Avtometriya 51 (5), 53–60 (2015) [Optoelectron., Instrum. Data Process. 51 (5), 471–477 (2015)].

    Google Scholar 

  20. E. I. Gerashchenko and S. M. Gerashchenko, Motion Separation Method and Optimization of Nonlinear Systems (Nauka, Moscow, 1975) [in Russian].

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. A. Frantsuzova or A. S. Vostrikov.

Additional information

Russian Text © The Author(s), 2019, published in Avtometriya, 2019, Vol. 55, No. 4, pp. 57–64.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frantsuzova, G.A., Vostrikov, A.S. PID Controller Design for a Second-Order Nonlinear Plant. Optoelectron.Instrument.Proc. 55, 364–370 (2019). https://doi.org/10.3103/S875669901904006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S875669901904006X

Keywords

Navigation