Advertisement

Identification of Dynamic Objects using a Family of Experimental Supporting Integral Curves

  • Yu. G. BulychevEmail author
  • A. G. Kondrashov
  • P. Yu. Radu
Analysis and Synthesis of Signals and Images
  • 5 Downloads

Abstract

A specially planned experiment based on obtaining a required family of estimates of supporting integral curves (approximately described in a given finite system of base functions) is used to solve a problem of active identification of a dynamic object, which corresponds to an a priori unknown differential equation. In view of the fact that experimental data may contain fluctuation and singular interference, a method is developed for optimal unbiased estimation of linear quantitative characteristics of the object behavior and an approximate analytical solution (differential equation), which is valid for a given set of permitted time values and an initial condition. The basic characteristics of the method are substantiated, and the results of the computational experiment are presented.

Keywords

dynamic object active identification singular interference supporting integral curves Lagrange multiplier method quantitative characters of the dynamic object behavior 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Krasovskii, “Science Studies and the State of the Theory of Control Processes. Overview,” Avtomatika i Telemekhanika, No. 4, 3–19 (2000).Google Scholar
  2. 2.
    V. N. Brandin, A. A. Vasil’ev, and S. T. Khudyakov, Fundamentals of Experimental Space Ballistics (Mashinostroenie, Moscow, 1974) [in Russian].Google Scholar
  3. 3.
    L. Ljung, “Model Accuracy in System identification,” Tekhnicheskaya Kibernetika, No. 6, 55–64 (1992) [IFAC Proceedings Volumes 24 (1), 277–281 (1991)].zbMATHGoogle Scholar
  4. 4.
    Yu. G. Bulychev and A. P. Manin, Mathematical Aspects in Determining the Motion of Aerocrafts (Mashinostroene, Moscow, 2000) [in Russian].Google Scholar
  5. 5.
    Yu. G. Bulychev, V. V. Vasil’ev, R. V. Dzhugan, et al., Information-Measurement Software of Field Tests of Complex Technical Units, Ed. by A. P. Manin and V. V. Vasil’ev (Mashinostroenie-Polyot, Moscow, 2016) [in Russian].Google Scholar
  6. 6.
    V. A. Leonov and B. K. Poplavskii, “ Filtering the Measurement Errors in Estimating the Linear Transformation of a Useful Signal,” Tekhnicheskaya Kibernetika, No. 1, 163–170 (1992).Google Scholar
  7. 7.
    Yu. G. Bulychev and A. V. Eliseev, “Measurement Processing Under Multistructural Interferences,” Avtometriya 43 (5), 26–38 (2007) [Optoelectron., Instrum. Data Process. 43 (5), 408–418 (2007)].Google Scholar
  8. 8.
    Yu. G. Bulychev, L. I. Borodin, V. A. Golovskoi, et al., “Processing Measured Data with a Random Change in the Structure of Dynamic Interferences,” Avtometriya 45 (2), 14–21 (2009) [Optoelectron., Instrum. Data Process. 45 (2), 100–106 (2009)].Google Scholar
  9. 9.
    Yu. G. Bulychev, “Methods for Numerical-Analytical Integration of Differential Equations,” Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki 31 (9), 1305–1319 (1991).MathSciNetzbMATHGoogle Scholar
  10. 10.
    Yu. G. Bulychev, A. A. Manin, and A. G. Zhukovskii, “Experimental-Analytical Method for Synthesizing Mathematical Models of Uncontrollable Motion of Spacecrafts,” Kosmicheskie Issledovaniya 37 (3), 312–321 (1999).Google Scholar
  11. 11.
    V. V. Ivanov, Calculation on an ECM (Nauk. Dumka, Kiev, 1986) [in Russian].Google Scholar
  12. 12.
    K. I. Babenko, Fundamentals of Numerical Analysis (Nauka, Moscow, 1986) [in Russian].Google Scholar
  13. 13.
    N. S. Bakhvalov, N. P. Zhidkov, G. M. Kobel’kov, Numerical Methods (BINOM. Laboratoriya Znanii, Moscow, 2008) [in Russian].zbMATHGoogle Scholar
  14. 14.
    A. I. Egorov, Riccati Equations (Pensoft Publishers, 2007).Google Scholar
  15. 15.
    E. Kamke, Handbook on Ordinary Differential Equations (Nauka, Moscow, 1971) [in Russian].Google Scholar
  16. 16.
    Yu. G. Bulychev and E. N. Chepel’, “Quasioptimal Method for Solving the Triangulation Problem in Prior Uncertainty,” Avtometriya 53 (6), 83–91 (2017) [Optoelectron., Instrum. Data Process. 53 (6), 604–611 (2017)].Google Scholar
  17. 17.
    Yu. G. Bulychev, I. G. Nasenkov, and A. V. Yachmenev, “Amplitude-Hyperbolic Method of Passive Location of a Radiation Source,” Avtometriya 54 (4), 43–50 (2018) [Optoelectron., Instrum. Data Process. 54 (4), 355–360 (2018)].Google Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • Yu. G. Bulychev
    • 1
    Email author
  • A. G. Kondrashov
    • 2
  • P. Yu. Radu
    • 3
  1. 1.JSC All-Russian Scientific Institute “Gradient”Rostov-on-DonRussia
  2. 2.JSC Scientific Production Association “Kvant”Velikiy NovgorodRussia
  3. 3.JSC Kaluga Research Radio Engineering InstituteZhukov, Kaluzhskaya oblastRussia

Personalised recommendations