Skip to main content
Log in

Optical Hilbert Diagnostics of Hydrogen Jet Burning

  • Optical Information Technologies
  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

Diffusion burning of a hydrogen jet is studied by methods of the Hilbert optics. A diagnostic system based on the batch-produced IAB–463M device is implemented, which includes a specially developed Hilbert filtration module coupled with a light source. The influence of local turbulent perturbations (puff or slug) arising in the tube forming the jet on the dynamic structure and flame evolution is revealed. This phenomenon can be used to control the space-time structure of the flame.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Smits and T. Lim, Flow Visualization. Techniques and Examples (Imperial College Press, London, 2000).

    Book  Google Scholar 

  2. G. S. Settles, Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media (Springer-Verlag, Berlin–Heidelberg, 2001).

    Book  MATH  Google Scholar 

  3. Yu. N. Dubnishchev, V. A. Arbuzov, P. P. Belousov, and P. Ya. Belousov, Optical Methods of Flow Studies (Izd. Sib. Univ., Novosibirsk, 2003).

    Google Scholar 

  4. A. F. Belozerov, Optical Methods of Gas Flow Visualization (Izd. Kazan. Gos. Univ., Kazan, 2007).

    Google Scholar 

  5. V. A. Arbuzov, N. A. Dvornikov, Yu. N. Dubnishchev, et al., “Hilbert-Diagnostics of Vortex Rings Induced in Air by a Pressure Pulse on a Hole,” Intern. J. Spray Combustion Dynamics 8 (3), 197–204 (2016).

    Article  Google Scholar 

  6. Yu. N. Dubnishchev, V. V. Sotnikov, V. A. Arbuzov, et al., “Measurement of the Velocity of Hilbert-Visualized Phase Structures by the Method of Emulation of Two-Dimensional Spatial Filtering of their Images,” Avtometriya 52 (6), 87–95 (2016) [Optoelectron., Instrum. Data Process. 52 (6), 601–608 (2016)].

    Google Scholar 

  7. Yu. A. Litvinenko, “Stability of Subsonic Macro-and Microjets and Microjet Burning (Review),” Sib. Fiz. Zh. 12 (3), 83–99 (2017).

    Google Scholar 

  8. V. V. Lemanov, V. V. Lukashov, R. Kh. Abdrakhmanov, et al., “Regimes of Unstable Expansion and Diffusion Combustion of a Hydrocarbon Fuel Jet,” Fiz. Goreniya Vzryva 54 (3), 3–12 (2018) [Combust., Expl., Shock Waves 54 (3), 255–263 (2018)].

    Google Scholar 

  9. T. Mullin, “Transition to Turbulence in a Pipe: A Historical Perspective,” Annu. Rev. Fluid Mech. 42, 1–24 (2011).

    Article  ADS  MATH  Google Scholar 

  10. V. V. Lemanov, V. V. Lukashov, and K. A. Sharov, “Dynamics of Circular Gas Jets under Conditions of Jet Source Instability,” in Abstracts of XXV All-Russia Workshop on Jet, Separated, and Unsteady Flows, September 11–14, 2018, St. Petersburg, pp. 155–157.

    Google Scholar 

  11. A. Hamins, J. C. Yang, and T. Kashiwagi, “An Experimental Investigation of the Pulsation Frequency of Flames,” Proc. of the Intern. Symp. on Combustion Institute 24 (1), 1695–1702 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. N. Dubnishchev.

Additional information

Russian Text © Yu.N. Dubnishchev, V.A. Arbuzov, V.V. Lukashov, K.A. Sharov, V.V. Lemanov, 2019, published in Avtometriya, 2019, Vol. 55, No. 1, pp. 21–25.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubnishchev, Y.N., Arbuzov, V.A., Lukashov, V.V. et al. Optical Hilbert Diagnostics of Hydrogen Jet Burning. Optoelectron.Instrument.Proc. 55, 16–19 (2019). https://doi.org/10.3103/S8756699019010035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699019010035

Keywords

Navigation