Advertisement

Analysis of the Transmission Spectra of Optical Microcavities Using the Mode Broadening Method

  • D. D. Ruzhitskaya
  • A. A. Samoilenko
  • A. D. Ivanov
  • K. N. Min’kov
Optical Information Technologies

Abstract

This paper presents an algorithm for processing the transmission spectra of whisperinggallery optical microcavities for use as a nanoparticle detector. The algorithm is based on the broadening of the microcavity resonance curve during precipitation of nanoparticles on the microcavity surface. Experimental results on the detection of particles are compared with Langmuir adsorption theory. The contribution of the instability of the excitation radiation source due to the temperature drift of the resonant frequency to the measurement error is estimated.

Keywords

optical microcavities optical sensor nanoparticles whispering-gallery modes Langmuir adsorption theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. L. Gorodetskii, Optical Microcavities with Giant Q-Factor (Fizmatlit, Moscow, 2011) [in Russian].Google Scholar
  2. 2.
    M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering Gallery Mode Sensors,” Adv. Opt. Photon. 7 (2), 168–240 (2015).CrossRefGoogle Scholar
  3. 3.
    Y. Hu, L. Shao, S. Arnold, et al., “Mode Broadening Induced by Nanoparticles in an Optical Whispering-Gallery Microcavity,” Phys. Rev. 90 (4), 043847 (2014).CrossRefGoogle Scholar
  4. 4.
    J. Wiersig, “Structure of Whispering-Gallery Modes in Optical Microdisks Perturbed by Nanoparticles,” Phys. Rev. A 84 (6), 063828 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    L. Shao, X.-F. Jiang, X.-C. Yu, et al., “Detection of Single Nanoparticles and Lentiviruses using Microcavity Resonance Broadening,” Adv. Mater. 25 (1), 5616–5620 (2013).CrossRefGoogle Scholar
  6. 6.
    V. V. Vassiliev, S. A. Zibrov, and V. L. Velichansky, “Compact Extended-Cavity Diode Laser for Atomic Spectroscopy and Metrology,” Rev. Sci. Instrum. 77 (1), 013102 (2006).ADSCrossRefGoogle Scholar
  7. 7.
    Ch. Van Loan, Computational Frameworks for the Fast Fourier Transform (SIAM, Philadelphia, 1992).CrossRefzbMATHGoogle Scholar
  8. 8.
    J. O. Smith III, Introduction to Digital Filters with Audio Applications (W3K Publishing, 2007).Google Scholar
  9. 9.
    P. Schaaf and J. Talbot, “Surface Exclusion Effects in Adsorption Processes,” J. Chem. Phys. 91 (7), 4401–4409 (1989).ADSCrossRefGoogle Scholar
  10. 10.
    A. A. Samoilenko, G. G. Levin, V. L. Lyaskovsky, et al., “Application of Whispering-Gallery-Mode Optical Microcavities for Detection of Silver Nanoparticles in an Aqueous Medium,” Optika and Spektroskopiya 122 (6), 1037–1039 (2017) [Optics and Spectroscopy 122 (6), 1002–1004 (2017)].Google Scholar
  11. 11.
    G. N. Vishnyakov, G. G. Levin, and V. L. Minaev, “Automated Interference Tools of the All-Russian Research Institute for Optical and Physical Measurements,” Avtometriya 53 (5), 131–138 (2017) [Optoelektron., Instrum. Data Process. 53 (5), 530–536 (2017)].Google Scholar
  12. 12.
    Center for Collective Use of High-Precision Measurement Technologies in the Field of Photonics. http://www.ckp.vniiofi.ru.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • D. D. Ruzhitskaya
    • 1
    • 2
  • A. A. Samoilenko
    • 2
  • A. D. Ivanov
    • 2
  • K. N. Min’kov
    • 2
    • 3
  1. 1.Lomonosov Moscow State UniversityMoscowRussia
  2. 2.All-Russian Scientific Research Institute of Optical and Physical MeasurementsMoscowRussia
  3. 3.Tikhonov Moscow Institute of Electronics and MathematicsNational Research University of Higher School of EconomicsMoscowRussia

Personalised recommendations