Advertisement

Planar Phase Electro-Optical Modulator Based on Chromophore-Doped Polyimides

  • S. N. Atutov
  • S. L. Mikerin
  • A. I. Plekhanov
  • A. E. Simanchuk
  • V. A. Sorokin
  • A. V. Yakimansky
  • N. N. Smirnov
  • N. A. Valisheva
Optical Information Technologies
  • 16 Downloads

Abstract

Experimental studies of nonlinear optical and electro-optical properties of original synthesized chromophore-doped polyimides with a covalently attached DR-13 dye are reported. Second harmonic generation measurements are compared with the results of direct electro-optical response measurements by the Teng–Man technique. High temperature stability of the examined polyimides is observed. Methods of creating a planar phase electro-optical modulator with the use of synthesized chromophore-doped polyimides are designed and elaborated. The optical and electro-optical characteristics of the modulator are presented.

Keywords

electro-optical polymers microwave photonics electro-optical modulator second harmonic generation Teng–Man method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. R. Dalton, W. H. Steier, B. H. Robinson, et al., “From Molecules to Opto-Chips: Organic Electro-Optic Materials,” J. Mater. Chem. 9 (9), 1905–1920 (1999).CrossRefGoogle Scholar
  2. 2.
    L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric Field Poled Organic Electro-Optic Materials: State of the Art and Future Prospects,” Chem. Rev. 110 (1), 25–55 (2010).CrossRefGoogle Scholar
  3. 3.
    O. Mitsunobu and Y. Yamada, “Preparation of Esters of Carboxylic and Phosphoric Acid via Quaternary Phosphonium Salts,” Bull. Chem. Soc. Japan. 40 (10), 2380–2382 (1967).CrossRefGoogle Scholar
  4. 4.
    G. I. Nosova, I. G. Abramov, N. A. Solovskaya, et al., “Synthesis and Photophysical Properties of Soluble Polyimides and Polyquinazolones Containing Side-Chain Chalcones or Azo Chromophores,” Polym. Sci. Ser. B3 53 (1–2), 73 (2011).CrossRefGoogle Scholar
  5. 5.
    A. V. Yakimansky, G. I. Nosova, N. A. Solovskaya, et al., “Dispersion of Quadratic Nonlinearity of Polarized Films of Chromophore-Containing Polyimides in the Range of Resonance Absorption,” Chem. Phys. Lett. 510 (4–6), 237–241 (2011).ADSCrossRefGoogle Scholar
  6. 6.
    A. I. Gorkovenko, A. I. Plekhanov, A. E. Simanchuk, et al., “Nonlinear Optical Properties of Chromophore-Containing Polyimides with Covalently Attached Dyes,” Avtometriya 50 (1), 116–122 (2014) [Optoelectron., Instrum. Data Process. 50 (1), 96–101 (2014)].Google Scholar
  7. 7.
    A. I. Gorkovenko, A. I. Plekhanov, and A. E. Simanchuk, “Temperature Dependence and the Dispersion of Nonlinear Optical Properties of Chromophore-Containing Polyimide Thin Films,” J. Appl. Phys. 116 (22), 223104 (2014).ADSCrossRefGoogle Scholar
  8. 8.
    C. C. Teng and H. T. Man, “Simple Reflection Technique for Measuring the Electro-Optic Coefficient of Poled Polymers,” Appl. Phys. Lett. 56 (18), 1734–1736 (1990).ADSCrossRefGoogle Scholar
  9. 9.
    Y. Shuto and M. Amano, “Reflection Measurement Technique of Electrooptic Coefficients in Lithium Niobate Crystals and Poled Polymer Films,” J. Appl. Phys. 77 (9), 4632–4638 (1995).ADSCrossRefGoogle Scholar
  10. 10.
    R. C. Hoffman, T. M. Pritchett, J. A. Orlicki, et al., “High-Voltage Poling of Bulk Guest-Host Polymers,” in Organic Thin Films for Photonic Applications, Ed. by W. N. Herman, S. R. Flom, and S. H. Foulger (American Chemical Society, Washington, 2010), ACS Symposium Ser., pp. 97–111.CrossRefGoogle Scholar
  11. 11.
    S. P. Pogossian, L. Vescan, and A. Vonsovici, “The Single-Mode Condition for Semiconductor Rib Waveguides with Large Cross Section,” J. Lightwave Technol. 16 (10), 1851–1853 (1998).ADSCrossRefGoogle Scholar
  12. 12.
    R. Moosburger and K. Petermann, “4×4 Digital Optical Matrix Switch Using Polymeric Oversized Rib Waveguides,” IEEE Photon. Technol. Lett. 10 (5), 684–686 (1998).ADSCrossRefGoogle Scholar
  13. 13.
    S. N. Atutov, S. L. Mikerin, A. E. Simanchuk, et al., “Measurement of the Characteristics of Ultrahigh-Frequency Optical Modulators by a Scanning Interferometer,” Avtometriya 52 (6), 67–75 (2016) [Optoelectron., Instrum. Data Process. 52 (6),585–591 (2016)].Google Scholar
  14. 14.
    D. L. K. Eng, S. Kozacik, B. C. Olbricht, et al., “All-Polymer Modulator for High Frequency Low Drive Voltage Applications,” Proc. SPIE 8622, 86220T (2013).ADSCrossRefGoogle Scholar
  15. 15.
    L. Baudzus and P. M. Krummrich, “Low Loss Electro-Optic Polymer Based Fast Adaptive Phase Shifters Realized in Silicon Nitride and Oxynitride Waveguide Technology,” Photonics 3 (3), 49 (2016).CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • S. N. Atutov
    • 1
  • S. L. Mikerin
    • 1
    • 2
  • A. I. Plekhanov
    • 1
  • A. E. Simanchuk
    • 1
    • 2
  • V. A. Sorokin
    • 1
  • A. V. Yakimansky
    • 3
  • N. N. Smirnov
    • 3
  • N. A. Valisheva
    • 4
  1. 1.Institute of Automation and Electrometry, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Vorozhtsov Institute of Organic Chemistry, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  3. 3.Institute of Macromolecular CompoundsRussian Academy of SciencesSt. Petersburg, V.O.Russia
  4. 4.Rzhanov Institute of Semiconductor Physics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations