Advertisement

Application of the Shack–Hartmann Wavefront Sensor for Monitoring the Parameters of a Supersonic Gas Jet

  • V. I. Trunov
  • K. V. Gubin
  • K. A. Ivanova
  • A. G. Poleshchuk
  • A. G. Sedukhin
  • V. V. Cherkashin
Optical Information Technologies
  • 20 Downloads

Abstract

Results of an experimental study of the density distribution in a small-size (1–2 mm in diameter) supersonic gas jet in vacuum are reported. The measurements are performed by the developed Shack–Hartmann wavefront sensor, which consists of a microlens array with 100 × 100 elements and a video camera with a resolution of 2048 × 2048 pixels. The reliability of measurements in terms of the space and time resolution, as well as in terms of the minimum levels of phase changes induced by the tested object, is analyzed.

Keywords

gas jet Laval nozzle Shack–Hartmann sensor wavefront analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Esarey, C. B. Schroeder, and W. P. Leemans, “Physics of Laser-Driven Plasma-Based Electron Accelerators,” Rev. Mod. Phys. 81, 1229 (2009).ADSCrossRefGoogle Scholar
  2. 2.
    V. I. Trunov, K. V. Lotov, K. V. Gubin, et al., “Laser-Driven Plasma Wakefield Electron Acceleration and Coherent Femtosecond Pulse Generation in X-Ray and Gamma Ranges,” J. Phys.: Conf. Ser. 793, 012028 (2017).Google Scholar
  3. 3.
    V. E. Leshchenko, V. I. Trunov, S. A. Frolov, et al., “Coherent Combining of Multimillijoule Parametric-Amplified Femtosecond Pulses,” Laser Phys. Lett. 11 (9), 095301 (2014).ADSCrossRefGoogle Scholar
  4. 4.
    M. Krishnan, K. W. Elliott, and C. G. R. Geddes, “Electromagnetically Driven, Fast Opening and Closing Gas Jet Valve,” Phys. Rev. ST Accel. Beams 14, 033502 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    C. G. R. Geddes, C. Toth, J. van Tilborg, et al., “High-Quality Electron Beams from a LaserWakefield Accelerator Using Plasma-Channel Guiding,” Nature 431 (7008), 538–541 (2004).ADSCrossRefGoogle Scholar
  6. 6.
    Solenoid Valves MH2/MH3/MH4, Fast-Switching Valves. https://www.festo.com/cat/en-gb gb/data/ doc ENGB/PDF/EN/MH2TO4 EN.PDF.Google Scholar
  7. 7.
    A. G. Poleshchuk, A. G. Sedukhin, V. I. Trunov, and V. G. Maksimov, “Hartmann Sensor on the Basis of Multielement Amplitude Masks with Apodized Apertures,” Komp. Optika 38 (4), 695–703 (2014).ADSCrossRefGoogle Scholar
  8. 8.
    A. G. Poleshchuk, A. G. Sedukhin, V. G. Maksimov, et al., “Shack–Hartmann Sensor as an Element of a System for Monitoring High-Power Laser Beams,” in Proc. Intern. Conf. “SibOptika-2013,” Novosibirsk, 2013, pp. 93–96.Google Scholar
  9. 9.
    A. G. Poleshchuk and A. G. Sedukhin, “Diffraction Technique for Testing the Resolution and Sensitivity of Hartmann and Shack—Hartmann Sensors,” Opt. Lett. 40 (21), 5050–5053 (2015).ADSCrossRefGoogle Scholar
  10. 10.
    Breitmeier. A NanoFocus Company. http://www.breitmeier.de/en/products/optical-profilometry/wli-lab.Google Scholar
  11. 11.
    V. P. Veiko, V. P. Korolkov, A. G. Poleshchuk, et al., “Laser Technologies in Micro-Optics. Part 1. Fabrication of Diffractive Optical Elements and Photomasks with Amplitude Transmission,” Avtometriya 53 (5), 66–77 (2017) [Optoelectron., Instrum. Data Process. 53 (5), 474–483 (2017)].Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • V. I. Trunov
    • 1
  • K. V. Gubin
    • 1
  • K. A. Ivanova
    • 1
  • A. G. Poleshchuk
    • 2
  • A. G. Sedukhin
    • 2
  • V. V. Cherkashin
    • 2
  1. 1.Institute of Laser Physics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Institute of Automation and Electrometry, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations