Skip to main content
Log in

Comparison of the Diffraction Efficiency of Reflection Holographic Gratings for Different Recording Schemes in Photopolymer Materials

  • Optical Information Technologies
  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

The relationship of the diffraction efficiencies of volume reflection holograms obtained with the use of double-beam and single-beam recording schemes in absorbing light-sensitive materials is studied theoretically and experimentally. This relationship is demonstrated by an example of a particular photopolymer material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. N. Sharangovich and E. A. Dovolnov, “Models of Holographic Record of Reflection and Transmitted Diffraction Gratings in Optical Absorbent Photopolymeric Materials,” Proc. SPIE 5464, 399–410 (2004).

    Article  ADS  Google Scholar 

  2. S. Gallego, M. Ortu˜no, C. Neipp, et al., “Maximum Effective Optical Thickness of the Gratings Recorded in Photopolymers,” Proc. SPIE 5827, 107–117 (2005).

    Article  ADS  Google Scholar 

  3. V. V. Shelkovnikov, E. F. Pen, and V. I. Kovalevsky, “Optimal Optical Density of the Absorbing Holographic Materials,” Opt. Memory Neural Networks (Inform. Opt.) 16 (2), 75–83 (2007).

    Article  Google Scholar 

  4. Yu. N. Denisyuk, “On the Reflection of Optical Properties of an Object in the Wave Field of the Radiation Scattered by it,” Optika Spektrosk. 15 (4), 522–532 (1963).

    Google Scholar 

  5. E. F. Pen, I. A. Zarubin, V. V. Shelkovnikov, and E. V. Vasil’ev, “Method for Determining the Shrinkage Parameters of Holographic Photopolymer Materials,” Avtometriya 52 (1), 60–69 (2016) [Optoelectron., Instrum. Data Process. 52 (1), 49–56 (2016)].

    Google Scholar 

  6. V. V. Shelkovnikov, E. V. Vasil’ev, V. V. Russkikh, et al., “Monochrome and Two-Color Holograms in Layered Photopolymer Materials,” Avtometriya 52 (4), 107–117 (2016) [Optoelectron., Instrum. Data Process. 52 (4), 404–412 (2016)].

    Google Scholar 

  7. H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Techn. J. 48 (9), 2909–2947 (1969).

    Article  Google Scholar 

  8. F.-K. Bruder, F. Deuber, T. Fäcke, et al., “Reaction-Diffusion Model Applied to High Resolution Bayfolr HX Photopolymer,” Proc. SPIE 7619, 76190I (2010).

    Article  Google Scholar 

  9. V. V. Shelkovnikov, E. F. Pen, E. V. Vasil’ev, and P. E. Tverdokhleb, “Development of Holographic Photopolymer Materials and Methods for Studying Them,” in Proc. All-Russia Workshop “Yurii Nikolaevich Denisyuk as a founder of Russian holography,” Ioffe Institute of Physics and Technology, St. Petersburg, 2007, pp. 241–261.

    Google Scholar 

  10. H. S. Bagdasarian, Theory of Radical Polymerization (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  11. S. A. Babin, E. V. Vasil’ev, V. I. Kovalevskii, et al., “Methods and Devices for Testing Holographic Photopolymer Materials,” Avtometriya 39 (2), 57–70 (2003).

    Google Scholar 

  12. E. F. Pen, “Device for Testing Light-Sensitive Holographic Materials,” Patent No. 165622 RF, Publ. 27.10.2016, Bul. No.30.

  13. W. K. Smothers, B. M. Monroe, A. M. Weber, and D. E. Keys, “Photopolymers for Holography,” Proc. SPIE 1212, 20–29 (1990).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. F. Pen.

Additional information

Original Russian Text © E.F. Pen, V.V. Shelkovnikov, 2018, published in Avtometriya, 2018, Vol. 54, No. 1, pp. 3–9.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pen, E.F., Shelkovnikov, V.V. Comparison of the Diffraction Efficiency of Reflection Holographic Gratings for Different Recording Schemes in Photopolymer Materials. Optoelectron.Instrument.Proc. 54, 1–6 (2018). https://doi.org/10.3103/S8756699018010016

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699018010016

Keywords

Navigation