Skip to main content
Log in

Laser technologies in micro-optics. Part 1. Fabrication of diffractive optical elements and photomasks with amplitude transmission

  • Diffractive Optics
  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

This paper is a review of studies carried out by the staff of the National Research University of Information Technologies, Mechanics and Optics (ITMO University, Saint-Petersburg) and the Institute of Automation and Electrometry of the Siberian Branch of the Russian Academy of Sciences (IAE SB RAS, Novosibirsk) in the field of development of laser engineering processes for the formation of the structure of diffractive optical elements (DOEs) and photomasks with amplitude binary and grayscale transmission. This paper also describes the results of the study of laser thermochemical technology for fabricating chrome DOEs and technologies for the fabrication of grayscale DOEs and photomasks based on the use of amorphous silicon and LDW glass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. J. Swanson and W. B. Veldkamp, “Diffractive Optical Elements for Use in Infrared System,” Opt. Eng. 28 (6), 605–608 (1989).

    ADS  Google Scholar 

  2. R. Doering and Y. Nishi, Handbook of Semiconductor Fabricating Technology (CRC Press, Taylor and Francis Group, Boca Raton–London–New York, 2007).

    Google Scholar 

  3. W. Moreau, Semiconductor Lithography. Principles, Practices, and Materials (Plenum Press, 1988).

    Book  Google Scholar 

  4. V. P. Veiko and M. N. Libenson, Laser Treatment (Lenizdat, Leningrad, 1973) [in Russian].

    Google Scholar 

  5. T. Okamoto, Y. Morishige, E. Ohmura, et al., “Femtosecond Laser Ablation of Cr-SiO2 Binary Mask,” Proc. SPIE 4830, 510–514 (2003).

    Article  ADS  Google Scholar 

  6. V. P. Veiko, G. A. Kotov, M. N. Libenson, et al., “Thermochemical Effect of Laser Radiation,” Dokl. Akad. Nauk SSSR 208, 587–590 (1973).

    Google Scholar 

  7. V. P. Koronkevich, A. D. Polishchuk, E. D. Churin, et al., “Laser Thermochemical Technology of Synthesis of Diffractive Optical Elements,” Kvant. Elektr. 12 (4), 755–761 (1985).

    Google Scholar 

  8. V. P. Veiko, E. A. Shakhno, A. G. Poleshchuk, et al., “Local Laser Oxidation of Thin Metal Films: Ultra- Resolution in Theory and in Practice,” J. Laser Micro Nanoen. 3 (3), 201–205 (2008).

    Article  Google Scholar 

  9. V. P. Veiko and S. M. Metev, Laser-Assisted Microtechnology. Vol. 19 (Springer-Verlag, Berlin–Heidelberg, 1998).

    Google Scholar 

  10. S. M. Metev, V. P. Veiko, S. G. Savchenko, et. al., “Thermochemical Action of Laser Radiation on Thin Metal Films,” Proc. IEEE J. Quant. Electr. 17 (9), 2004–2007 (1981).

    Article  ADS  Google Scholar 

  11. A. G. Poleshchuk, E. G. Churin, Yu. I. Yurlov, et al., “Application of an Evaporated Photoresist (AsS) in the Production of Kinoform Optical Elements,” J. Imag. Sci. 30 (3), 132–135 (1986).

    Google Scholar 

  12. V. Z. Gochiyaev, V. P. Korolkov, A. P. Sokolov, et al., “Grayscale Optical Writing on a-Si Films,” Kvant. Elektr. 16 (11), 2343–2348 (1989).

    Google Scholar 

  13. V. P. Korolkov, A. I. Malyshev, V. G. Nikitin, et al., “Application of Gray-Scale LDWGlass Masks for Fabrication of High-Efficiency DOEs,” Proc. SPIE 3633, 129–138 (1999).

    Article  ADS  Google Scholar 

  14. A. G. Poleshchuk, E. G. Churin, V. P. Koronkevich, et al., “Polar Coordinate Laser Pattern Generator for Fabrication of Diffractive Optical Elements with Arbitrary Structure,” Appl. Opt. 38, 1295–1301 (1999).

    Article  ADS  Google Scholar 

  15. R. V. Shimansky, A. G. Poleshchuk, V. P. Korolkov, et al., “Alignment of the Writing Beam with the Diffractive Structure Rotation Axis in Synthesis of Diffractive Optical Elements in a Polar Coordinate System,” Avtometriya 53 (2), 30–38 (2017) [Optoelectron., Instrum. Data Process. 53 (2), 123–130 (2017)].

    Google Scholar 

  16. V. P. Kir’anov, A. V. Kir’anov, D. Yu. Kruchinin, et al., “Analysis of Modern Technologies for Synthesizing Angle-Measuring Structures for High-Precision Angular Measurements (Analytical Review),” Opt. Zh. 74 (12), 40–49 (2007).

    Google Scholar 

  17. J. Guhr, “Test Results of the Laser Writing System CLWS-300c,” Diffract. Opt. 12, 206–207 (1997).

    Google Scholar 

  18. P. Piero, S. Sinezi, M. Ripetto, et al., “Using the Circular Laser Writing System for Fabrication of DOE Grayscale Masks on the Base of LDW Glass Plates,” Comput. Opt., No. 17, 85–93 (1997).

    Google Scholar 

  19. N. L. Kazanskii, “Research Complex for Solving Computer Optics Problems”, Komp. Tekh., No. 29, 58–77 (2006).

    Google Scholar 

  20. A. G. Poleshchuk, R. A. Sametov, and A. G. Sedukhin, “Multibeam Laser Writing of Diffractive Optical Elements,” Avtometriya 48 (4), 3–11 (2012) [Optoelectron., Instrum. Data Process. 48 (4), 327–333 (2012)].

    Google Scholar 

  21. G. A. Kotov and M. N. Libenson, “Growth Theory of Thin Oxide Films on a Metal Surface with Pulsed Heating,” Elektronnnaya Tekhnika 6 (4), 56–64 (1973).

    Google Scholar 

  22. M. N. Libenson, Laser-Induced Optical and Thermal Processes in Condensed Media and Their Mutual Influence (Nauka, Saint-Petersburg, 2007) [in Russian].

    Google Scholar 

  23. V. P. Veiko, V. P. Korolkov, A. G. Polishchuk, et al., “Study of the Spatial Resolution of Laser Thermochemical Technology for Writing Diffractive Microstructures,” Kvant. Elektr. 41 (7), 631–636 (2011).

    Article  Google Scholar 

  24. V. P. Veiko and A. G. Poleshchuk, “Laser-Induced Local Oxidation of Thin Metal Films: Physical Fundamentals and Applications,” in Fundamentals of Laser-Assisted Micro- and Nanotechnologies. Vol. 195. Ed. by V. P. Veiko and V. I. Konov (2014).

    Chapter  Google Scholar 

  25. V. P. Koronkevich, A. R. Polishchuk, E. R. Churin, et al., “Selective Etching of Laser-Exposed Thin Chromium Films,” Pis’ma v Zh. Tekh. Fiz. 11 (3), 144–148 (1985).

    Google Scholar 

  26. V. A. Cherkashin, E. G. Churin, J. H. Burge, et al., “Processing Parameters Optimization for Thermochemical Writing of DOEs on Chromium Films,” Proc. SPIE 3010, 168–179 (1997).

    Article  ADS  Google Scholar 

  27. A. G. Polishchuk, S. K. Golubtsov, A. P. Sametov, et al., “Experimental Study of Superlocal Laser Thermochemical Nanolithography,” in International Conference “SibOptika-2017” (Siberian State University of Geosystems and Technologies, Novosibirsk, 2017).

    Google Scholar 

  28. “High Energy Beam Sensitive Glasses,” US Patent 5285517, Publ. 08 February 1994.

  29. V. P. Korolkov, A. I. Malyshev, V. G. Nikitin, et al., “Application of Gray-Scale LDW-Glass Masks for Fabrication of High-Efficiency DOEs,” in Proc. SPIE 3633, 129–138 (1999).

    Article  ADS  Google Scholar 

  30. J. H. Burge, D. S. Anderson, T. D. Milster, et al., “Measurement of a Convex Secondary Mirror Using a Holographic Test Plate,” Proc. SPIE 2199, 193–198 (1994).

    Article  ADS  Google Scholar 

  31. D. Yu. Kruchinin and O. V. Yakovlev, “Study of Angular Errors of Circular Optical Scales Fabricated with the Use of a CLWS-300 Laser Image Generator,” Opt. Zh. 78 (6), 47–50 (2011).

    Google Scholar 

  32. A. G. Poleschuk, “Fabricate of Highly Effective Elements of Diffractive Optics with the Use of Grayscale and Photoscanning Technologies,” Avtometriya, No. 6, 66–76 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Veiko.

Additional information

Original Russian Text © V.P. Veiko, V.P. Korolkov, A.G. Poleshchuk, D.A. Sinev, E.A. Shakhno, 2017, published in Avtometriya, 2017, Vol. 53, No. 5, pp. 66–77.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veiko, V.P., Korolkov, V.P., Poleshchuk, A.G. et al. Laser technologies in micro-optics. Part 1. Fabrication of diffractive optical elements and photomasks with amplitude transmission. Optoelectron.Instrument.Proc. 53, 474–483 (2017). https://doi.org/10.3103/S8756699017050077

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699017050077

Keywords

Navigation