Skip to main content
Log in

Filtering of images of small-sized objects in systems with circular microscaning

  • Analysis and Synthesis of Signals and Images
  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

This paper describes a model for detection of images obtained in circular microscanning. To detect objects on a low background with the use of an image detection system based on circular microscanning, an approach to image filtering is proposed. The calculation of the noise covariance matrix with respect to the data obtained by the numerical simulation method is used. The calculated matrix is used in filter construction. It is shown that the applied approach makes it possible to increase the signal/noise ratio in image processing with a low background component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Tarasov and Yu. G. Yakushenkov, “Some Ways to Improve Thermal Imaging Systems,” Spetsial’naya Tekhnika, No. 2, 11–19 (2004).

    Google Scholar 

  2. W. Cabanski, R. Breiter, and K.-H. Mauk, “Miniaturized High Performance Starring Thermal Imaging System,” Proc. SPIE 4028, 208–219 (2000).

    Article  ADS  Google Scholar 

  3. US Pat. 5774179. Method and System for Fast Microscanning, P. Chevrette, J. Fortin. Publ. 1998.

  4. J. M. Wiltse and J. L. Miller, “Imagery Improvements in Staring Infrared Imagers by Employing Subpixel Microscan,” Proc. SPIE 44, 056401 (2005).

    Google Scholar 

  5. V. D. Bochkov, B. N. Drazhnikov, P. A. Kuznetsov, et al., “Features of CMT-Based 1024 × 10 Photodetectors with Time Delay and Integration,” Prikladnaya Fizika, No. 1, 58–61 (2014).

    Google Scholar 

  6. P. A. Kuznetsov, I. S. Moshchev, V. V. Salo, et al., “Photodetector Modules with Time Delay and Integration for Controlling Earth’s Surface in the IR Range,” Uspekhi Prikladnoi Nauki 2 (6), 635–638 (2014).

    Google Scholar 

  7. V. N. Solyakov, K. V. Kozlov, and P. A. Kuznetsov, “Computer Model for Detection of Point Sources of Radiation by Photodetector Arrays with Time Delay and Integration,” Prikl. Fiz., No. 2, 54–57 (2014).

    Google Scholar 

  8. K. V. Kozlov, V. N. Solyakov, P. A. Kuznetsov, et al., “Study of the Frequency Characteristics of the Photodetector Arrays with Time Delay Integration,” Uspekhi Prikladnoi Fiziki 2 (5), 528–538 (2014).

    Google Scholar 

  9. V. N. Solyakov, B. N. Drazhnikov, K. A. Khamidulllin, et al., “Features of Detection of Point Sources of Radiation by Photodetectors with Time Delay and Integration,” Uspekhi Prikladnoi Fiziki 1 (4), 506–509 (2013).

    Google Scholar 

  10. G. I. Gromilin, B. N. Drazhnikov, K. V. Kozlov, et al., “Simulation of Image Scanning with the Use of Photodetector Arrays,” in Proc. XXIV Intern. Scientific-Engineering Conf. on Photoelectronics and Night Vision Devices, Moscow, 2016 [in Russian].

    Google Scholar 

  11. V. S. Kirichuk and A. K. Shakenov, “Algorithm of Image Reconstruction in the Problem of Object Detection During Circular Microscanning,” Avtometriya 52 (1), 15–21 (2016) [Optoelectron., Instrum. Data Process. 52 (1), 11–16 (2016)].

    Google Scholar 

  12. W. K. Pratt, Digital Image Processing: PIKS Scientific Inside, 4th ed. (Pixel Soft, Los Altos, 2007).

    Book  MATH  Google Scholar 

  13. T.-W. Bae and K.-I. Sohng, “Small Target Detection Using Bilateral Filter Based on Edge Component,” J. Infrared, Millimeter, Terahertz Waves 31, 735–743 (2010).

    Google Scholar 

  14. S. D. Deshpande, M. H. Er, V. Ronda, et al., “Max-Mean and Max-Median Filters for Detection of Small-Targets,” Proc. SPIE 3809, 74–83 (1999).

    Article  ADS  Google Scholar 

  15. T. Soni, R. Zeidler, and W. H. Ku, “Performance Evaluation of 2-D Adaptive Prediction Filters for Detection of Small Object in Image Data,” IEEE Trans. Image Process. 2 (3), 327–340 (1993).

    Article  ADS  Google Scholar 

  16. P. A. Ffrench, J. R. Zeidler, and W. H. Ku, “Enhanced Detectability of Small Objects in Correlated Clutter Using an Improved 2-D Adaptive Lattice Algorithm,” IEEE Trans. Image Process. 6 (3), 383–397 (1997).

    Article  ADS  Google Scholar 

  17. P. Hong, C. Wang, and Z. Zhang, “Weak Point Target Detection in the Complicated Infrared Background,” Proc. SPIE. 8200 820007 (2011).

    Article  Google Scholar 

  18. Y.-X. Dong, Y. Li, and H.-B. Zhang, “Research on Infrared Dim-Point Target Detection and Tracking Under Sea-Sky-Line Complex Background,” Proc. SPIE. 8193 81932J (2011).

    Article  ADS  Google Scholar 

  19. V. M. Artem’ev, A. O. Naumov, and L. L. Kokhan, “Detection of Point Objects on Images in Uncertainty,” Informatika, No. 2, 15–24 (2010).

    Google Scholar 

  20. A. K. Shakenov, “Algorithms of Background Suppression in the Problem of Detection of Point Targets in Images,” Avtometriya 50 (4), 81–87 (2014) [Optoelectron., Instrum. Data Process. 50 (4), 389–394 (2014)].

    Google Scholar 

  21. Electro-L. Earth in the Past 24 Hours. http://electro.ntsomz.ru.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Shakenov.

Additional information

Original Russian Text © A.K. Shakenov, D.E. Budeyev, 2017, published in Avtometriya, 2017, Vol. 53, No. 4, pp. 120–126.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakenov, A.K., Budeyev, D.E. Filtering of images of small-sized objects in systems with circular microscaning. Optoelectron.Instrument.Proc. 53, 408–413 (2017). https://doi.org/10.3103/S8756699017040148

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699017040148

Keywords

Navigation