Skip to main content
Log in

Hybrid microcavity for superminiature single quantum dot based emitters

  • Physical and Engineering Fundamentals of Microelectronics and Optoelectronics
  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

This paper describes the development and implementation of a microcavity based on a semiconductor Bragg reflector and a microlens selectively positioned over a single (111) InGaAs quantum dot. The structure of the microcavity ensures effective pumping of quantum dots and high external quantum emission output efficiency. This microcavity can be used to create single photon emitters and emitters of entangled photon pairs based on single semiconductor quantum dots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. Gisin, G. Ribordy, W. Tittel, et al., “Quantum Cryptography,” Rev. Mod. Phys. 74 (1), 145–196 (2002).

    Article  ADS  Google Scholar 

  2. The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quantum Computation, Eds. by D. Bouwmeester, A. K. Ekert, and A. Zeilinger (Springer-Verlag, Berlin, 2000).

  3. D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures (John Wiley & Sons, Chichester, 1999).

    Google Scholar 

  4. Semiconductor Nanostructures, Ed. by D. Bimberg (Springer-Verlag, Berlin — Heidelberg, 2008).

  5. Single Quantum Dots: Fundamentals, Applications and New Concepts, Ed. by P. Michler (Springer-Verlag, Berlin — Heidelberg, 2003).

  6. Self-Assembled Quantum Dots, Ed. by Z. M. Wang (Springer-Verlag, New York, 2008).

  7. A. V. Gaisler, A. S. Jaroshevich, I. A. Derebezov, et al., “Spectroscopy of Single InAs Quantum Dots,” Avtometriya 49 (5), 93–99 (2013) [Optoelectron., Instrum. Data Process. 49 (5), 498–503 (2013)].

    Google Scholar 

  8. A. Lochmann, E. Stock, O. Schulz, et al., “Electrically Driven Single Quantum Dot Polarized Single Photon Emitter,” Electron. Lett. 45 (11), 566–567 (2009).

    Article  Google Scholar 

  9. D. Bimberg, E. Stock, A. Lochmann, et al., “Quantum Dots for Single- and Entangled-Photon Emitters,” IEEE Photon. J. 1 (1), 58–68 (2009).

    Article  Google Scholar 

  10. T. Heindel, C. A. Kessler, M. Rau, et al., “Quantum Key Distribution Using Quantum Dot Single photon Emitting Diodes in the Red and Near Infrared Spectral Range,” New J. Phys. 14, 083001 (2012).

    Article  ADS  Google Scholar 

  11. O. Benson, C. Santori, M. Pelton, et al., “Regulated and Entangled Photons from a Single Quantum Dot,” Phys. Rev. Lett. 84 (11), 2513–2516 (2000).

    Article  ADS  Google Scholar 

  12. R. M. Stevenson, R. J. Young, P. Atkinson, et al., “A Semiconductor Source of Triggered Entangled Photon Pairs,” Nature 439, 179–182 (2006).

    Article  ADS  Google Scholar 

  13. A. Mohan, M. Felici, P. Gallo, et al., “Polarization-Entangled Photons Produced with High-Symmetry Site-Controlled Quantum Dots, Nature Photon 4, 302–306 (2010).

    Article  Google Scholar 

  14. R. M. Stevenson, C. L. Salter, J. Nilsson, et al., “Indistinguishable Entangled Photons Generated by a Light-Emitting Diode,” Phys. Rev. Lett. 108 (4), 040503 (2012).

    Article  ADS  Google Scholar 

  15. R. Seguin, A. Schliwa, T. D. Germann, et al., “Control of Fine-Structure Splitting and Excitonic Binding Energies in Selected Individual InAs/GaAs Quantum Dots,” Appl. Phys. Lett. 89 (26), 263109 (2006).

    Article  ADS  Google Scholar 

  16. R. Seguin, A. Schliwa, S. Rodt, et al., “Quantum-Dot Size Dependence of Exciton Fine-Structure Splitting,” Physica E: Low-dim. Syst. Nanostruct. 32 (1–2), 101–103 (2006).

    Article  ADS  Google Scholar 

  17. A. Schliwa, M. Winkelnkemper, A. Lochmann, et al., “In(Ga)As/GaAs Quantum Dots Grown on a (111) Surface as Ideal Sources of Entangled Photon Pairs,” Phys. Rev. B. 80 (16), 161307(R) (2009).

    Article  ADS  Google Scholar 

  18. JCMwave. Complete Finite Element Technology for Optical Simulations. http://www.Jcmwave.com.

  19. Meep FDTD. Free Finite-Difference Time-Domain Simulation Software Package. http://ab-initio.mit.edu/wiki/index.php/Meep.

  20. S. Panyakeow, “Quantum Nanostructures by Droplet Epitaxy,” Eng. J. 13 (1), 51–56 (2009).

    Article  Google Scholar 

  21. Z. Gong, Z. C. Niu, S. S. Huang, et al., “Formation of GaAs/AlGaAs and InGaAs/GaAs Nanorings by Droplet Molecular-Beam Epitaxy,” Appl. Phys. Lett. 87 (9), 093116 (2005).

    Article  ADS  Google Scholar 

  22. R. M. Thompson, R. M. Stevenson, A. J. Shields, et al., “Single photon Emission from Exciton Complexes in an Individual Quantum Dots,” Phys. Rev. B 64 (20), 201302 (R) (2001).

    Article  ADS  Google Scholar 

  23. R. M. Thompson, R. M. Stevenson, A. J. Shields, et al., “Resonance Absorption by Nuclear Magnetic Moments in a Solid,” Phys. Rev. 69 (1–2), 37–38 (1946).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Derebezov.

Additional information

Original Russian Text © V.A. Gaisler, I.A. Derebezov, A.V. Gaisler, D.V. Dmitriev, A.I. Toropov, S. Fischbach, A. Schlehahn, A. Kaganskiy, T. Heindel, S. Bounouar, S. Rodt, S. Reitzenstein, 2017, published in Avtometriya, 2017, Vol. 53, No. 2, pp. 95–101.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaisler, V.A., Derebezov, I.A., Gaisler, A.V. et al. Hybrid microcavity for superminiature single quantum dot based emitters. Optoelectron.Instrument.Proc. 53, 178–183 (2017). https://doi.org/10.3103/S875669901702011X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S875669901702011X

Keywords

Navigation