Skip to main content
Log in

Optoelectronic scanning system upgrade by energy center localization methods

  • Optical Information Technologies
  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

A problem of upgrading an optoelectronic scanning system with digital post-processing of the signal based on adequate methods of energy center localization is considered. An improved dynamic triangulation analysis technique is proposed by an example of industrial infrastructure damage detection. A modification of our previously published method aimed at searching for the energy center of an optoelectronic signal is described. Application of the artificial intelligence algorithm of compensation for the error of determining the angular coordinate in calculating the spatial coordinate through dynamic triangulation is demonstrated. Five energy center localization methods are developed and tested to select the best method. After implementation of these methods, digital compensation for the measurement error, and statistical data analysis, a non-parametric behavior of the data is identified. The Wilcoxon signed rank test is applied to improve the result further. For optical scanning systems, it is necessary to detect a light emitter mounted on the infrastructure being investigated to calculate its spatial coordinate by the energy center localization method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Yu. Sergiyenko, “Optoelectronic System for Mobile Robot Navigation,” Avtometriya 46 (5), 18–35 (2010) [Optoelectron., Instrum. Data Process. 46 (5), 414–428 (2010)].

    Google Scholar 

  2. J. T. Tippett, D. A. Borkowitz, L. C. Clapp, et al., Optical and Electro-optical Information Processing. Cambridge, (Massachusetts Institute of Technology, 1965).

    Google Scholar 

  3. M. H. Korayem, F. S. Heidari, “Simulation and Experiments for a Vision-Based Control of a 6R Robot,” Intern. J. Adv. Manuf. Technol. 41 (3), 367–385 (2009).

    Article  Google Scholar 

  4. J. C. Rodriguez-Quinonez, O. Sergiyenko, D. Hernandez-Balbuena, et al., “Improve 3D Laser Scanner Measurements Accuracy using a FFBP Neural Network with Widrow-Hoff Weight/Bias Learning Function,” Opto-Electron. Rev. 22 (4), 224–235 (2014).

    Article  ADS  Google Scholar 

  5. L. C. Basaca-Preciado, O. Yu. Sergiyenko, J. C. Rodriguez-Quinonez, et al., “Optical 3D Laser Measurement System for Navigation of Autonomous Mobile Robot,” Opt. Lasers Eng. 54, 159–169 (2014).

    Article  Google Scholar 

  6. O. Yu. Sergiyenko, V. V. Tyrsa, L. F. Devia, et al., “Dynamic Laser Scanning Method for Mobile Robot Navigation,” in Proc. of the ICROS-SICE Intern. Joint Conf., Fukuoka, Japan, 2009, pp. 4884–4889.

    Google Scholar 

  7. M. Rivas-Lopez, O. Yu. Sergiyenko, V. Tyrsa, et al., “Optoelectronic Method for Structural Health Monitoring,” Struct. Health Monitoring 9 (2), 105–120 (2010). DOI: 10.1177/ 1475921709340975.

    Article  Google Scholar 

  8. W. Flores-Fuentes, M. Rivas-Lopez, O. Sergiyenko, et al., “Energy Center Detection in Light Scanning Sensors for Structural Health Monitoring Accuracy Enhancement,” IEEE Sensors J. 14 (7), 2355–2361 (2014). DOI: 10.1109/JSEN.2014.2310224.

    Article  Google Scholar 

  9. J. C. Rodriguez-Quinonez, O. Sergiyenko, F. F. Gonzalez-Navarro, et al., “Surface Recognition Improvement in 3D Medical Laser Scanner using Levenberg — Marquardt Method,” Signal Processing 93 (2), 378–386 (2012).

    Article  Google Scholar 

  10. Y. Bao, H. Li, X. Sun, et al., “Compressive Sampling Based Data Loss Recovery for Wireless Sensor Networks used in Civil Structural Health Monitoring,” Struct. Health Monitoring 12 (1), 78–95 (2012).

    Article  Google Scholar 

  11. M. Rivas-Lopez, W. Flores-Fuentes, J. Rivera-Castillo, et al. “A Method and Electronic Device to Detect the Optoelectronic Scanning Signal Energy Centre,” in Optoelectronics: Advanced Materials and Devices (InTech, Rijeka, 2013), Ch. 16, pp. 391–419. DOI: 10.5772/51993.

    Google Scholar 

  12. M. Rivas-Lopez, O. Sergiyenko, M. Aguirre, et al., “Spatial Data Acquisition by Laser Scanning for Robot or SHM Task,” in Proc. of the IEEE Intern. Symp. on Industrial Electronics, Cambridge, United Kingdom, 2008, pp. 1458–1462. DOI: 10.1109/ISIE.2008.4676974.

    Google Scholar 

  13. W. Flores-Fuentes, M. Rivas-Lopez, O. Sergiyenko, J. Rivera-Castillo, “Comparison of Signal Peak Detection Algorithms in the Search of the Signal Energy Center for Measuring with Optical Scanning,” in Proc. of the IEEE XXII Intern. Conf. on Communications, Computer, Electronics, Automation, Robotics and Industrial Exposition (Guerrero, Mexico, 2011).

    Google Scholar 

  14. W. Flores-Fuentes, M. Rivas-Lopez, O. Sergiyenko, et al., “Combined Application of Power Spectrum Centroid and Support Vector Machines for Measurement Improvement in Optical Scanning Systems,” Signal Processing 98, 37–51 (2014).

    Article  Google Scholar 

  15. T. H. Park, Introduction to Digital Signal Processing: Computer Musically Speaking (World Scientific, Singapore, 2009).

    Book  MATH  Google Scholar 

  16. A. M. Batrakov, I. V. Il’in, and A. V. Pavlenko, “Precision Digital Signal Integrators with Accurate Synchronization,” Avtometriya 51 (1), 62–69 (2015) [Optoelectron., Instrum. Data Process. 51 (1), 51–57 (2015)].

    Google Scholar 

  17. G. K. Palshikar, “Simple Algorithms for Peak Detection in Time-Series,” in Proc. of the 1st Intern. Conf. Advanced Data Analysis, Business Analytics and Intelligence, Ahmedabad, India, 2009, pp. 1–13.

    Google Scholar 

  18. J. Gascon-Moreno, E. G. Ortiz-Garcia, S. Salcedo-Sanz, et al., “Multi-Parametric Gaussian Kernel Function Optimization for "-SVMr using a Genetic Algorithm,” in Adv. in Comput. Intell. Ser. Lecture Notes in Comput. Sci. (Springer-Verlag, Berlin — Heidelberg, 2011), Vol. 6692, pp. 113–120. DOI: 10.1007/978-3-642-21498-1 15.

    Google Scholar 

  19. J. K. Choi, S. H. Park, D. J. Cho, K. Y. Seo, “Correction Error Generation Algorithm for Differential Positioning Performance Analysis of Navigation Equipment,” in Proc. of the Intern. Conf. Control, Automation and Systems, Seoul, South Korea, 2008, pp. 1099–1103.

    Google Scholar 

  20. C.-W. Hsu, C.-C. Chang, C.-J. Lin, A Practical Guide to Support Vector Classification, Tech. Rep. 2003. http://www.csie.ntu.edu.tw/˜cjlin/papers/guide/guide.pdf.

    Google Scholar 

  21. R. P. W. Duin, P. Juszczak, P. Paclik, et al., PRTools4: A MATLAB Toolbox for Pattern Recognition, Ver. 4.1. 2007. http://www.prtools.org/files/PRTools4.1.pdf.

    Google Scholar 

  22. F. Perez-Cruz, O. Bousquet, “Kernel Methods and Their Potential use in Signal Processing,” IEEE Signal Processing Magazine 21 (3), 57–65 (2004).

    Article  ADS  Google Scholar 

  23. J. L. Devore, Probability and Statistics for Engineering and the Sciences (Cengage Learning, Boston, 2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Flores-Fuentes.

Additional information

Original Russian Text © W. Flores-Fuentes, O. Sergiyenko, J.C. Rodriguez-Quin˜onez,M. Rivas-López, D. Hernández-Balbuena, L.C. Básaca-Preciado, L. Lindner, F.F. González-Navarro, 2016, published in Avtometriya, 2016, Vol. 52, No. 6, pp. 76–86.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flores-Fuentes, W., Sergiyenko, O., Rodriguez-Quiñonez, J.C. et al. Optoelectronic scanning system upgrade by energy center localization methods. Optoelectron.Instrument.Proc. 52, 592–600 (2016). https://doi.org/10.3103/S8756699016060108

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699016060108

Keywords

Navigation