Skip to main content
Log in

Study of optical and thermo-optical properties of a hybrid photopolymer material based on thiol-siloxane and tetraacrylate oligomer

  • Optical Information Technologies
  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

Optical (refractive index and absorption coefficient) and thermo-optical (linear thermal expansion and thermo-optic coefficients) characteristics of a new hybrid organic-inorganic photopolymer material “Hybrimer-TATS” based on thiol-siloxane and tetraacrylate oligomers are studied. Variation of the ratio of initial components makes it possible to change the thermo-optic coefficient from −0.7·10−4 to 0,66 · 10−4 K−1, which offers prospects for synthesizing athermal optical components and optical elements with a high sensitivity to temperature variation for thermal sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hybrid Polymers, Micro Resist Technology. http://microresist.de/en/product/hybrid-polymers.

  2. Z. Zhiyi, Z. Ping, L. Peng, and S. Fengguo, “Thermo-Optic Coefficients of Polymers for Optical Waveguide Applications,” Polymer Commun. 47 (14), 4893–4896 (2006).

    Article  Google Scholar 

  3. V. B. Garmash, F. A. Egorov, L. N. Kolomiets, et al., “Possibilities, Tasks, and Prospects of Fiber-Optical Measurement Systems in Modern Instrument Engineering,” Foton-Ekspress Nauka 46 (6), 128–140 (2005).

    Google Scholar 

  4. Y. Kurata, O. Sugihara, T. Kaino, et al., “Thermo-Optic Controllable Hybrid Photonic Polymers Containing inorganic Nanoparticles,” JOSA B 26 (12), 2377–2381 (2009).

    Article  ADS  Google Scholar 

  5. V. V. Shelkovnikov, L. V. Ektova, N. A. Orlova, et al., “Synthesis and Thermomechanical Properties of Hybrid Photopolymer Films Based on the Thiol-Siloxane and Acrylate Oligomers,” J. Mater. Sci. 50 (23), 7544–7556 (2015).

    Article  ADS  Google Scholar 

  6. B. A. Lapshinov and A. N. Magunov, “Setup for Measuring the Temperature Dependence of the Refractive Index of Solids,” Pribory Tekhn. Eksper., No. 1, 159–164 (2010).

    Google Scholar 

  7. J. M. Jewell, C. Askins, and I. D. Aggarwal, “Interferometric Method for Concurrent Measurement of Thermo- Optic and Thermal Expansion Coefficients,” Appl. Opt. 30 (25), 3656–3660 (1991).

    Article  ADS  Google Scholar 

  8. H. Lorenz, M. Laudon, and P. Renaud, “Mechanical Characterization of a New High-Aspect-Ratio Near UVPhotoresist,” Microelectron. Eng. 41/42, 371–374 (1998).

    Article  Google Scholar 

  9. M. R. Saleem, S. Honkanen, and J. Turunen, “Thermo-Optic Coefficient of Ormocomp and Comparison of Polymer Materials in Athermal Replicated Subwavelength Resonant Waveguide Gratings,” Opt. Commun. 288, 56–65 (2013).

    Article  ADS  Google Scholar 

  10. T. Masahiro, K. Naohiro, S. I. Okihiro, and O. Naomichi, “A New Method for Accurately Measuring Temperature Dependence of Refractive Index,” Opt. Rev. 12 (2), 97–100 (2005).

    Article  Google Scholar 

  11. J. M. Jewell, “Thermooptic Coefficients of Some Standard Reference Material Glasses,” J. Amer. Ceram. Soc. 74 (7), 1689–1691 (1991).

    Article  Google Scholar 

  12. W. Rong, A. D. Rakíc, and M. L. Majewski, “Design of Microchannel Free-Space Optical Interconnects Based on Vertical-Cavity Surface-Emitting Laser Arrays,” Appl. Opt. 41 (17), 3469–3478 (2002).

    Article  ADS  Google Scholar 

  13. T. H. Jamieson, “Thermal Effects in Optical Systems,” Opt. Eng. 20 (2), 156–160 (1981).

    Article  ADS  Google Scholar 

  14. T. K. Chekhlova, S. V. Zhivtsov, and E. I. Grabovskii, “Temperature Dependence of Sol-Gel Waveguides,” Radiotekhn. Elektron. 51 (7), 855–861 (2006).

    Google Scholar 

  15. Yu. N. Kulchin, Yu. D. Vorobyev, O. B. Vitrick, et al., “Temperature Sensor Based onFiber-Optical Fabry–Perot Interferometers with External Resonators,” Opt. Tekhnika 12 (1), 24–25 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Mironnikov.

Additional information

Original Russian Text © N.G. Mironnikov, V.P. Korolkov, D.I. Derevyanko, V.V. Shelkovnikov, O.B. Vitrick, A.Yu. Zhizhchenko, 2016, published in Avtometriya, 2016, Vol. 52, No. 2, pp. 88–96.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mironnikov, N.G., Korolkov, V.P., Derevyanko, D.I. et al. Study of optical and thermo-optical properties of a hybrid photopolymer material based on thiol-siloxane and tetraacrylate oligomer. Optoelectron.Instrument.Proc. 52, 180–186 (2016). https://doi.org/10.3103/S8756699016020114

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699016020114

Keywords

Navigation