Skip to main content
Log in

Control of the optical properties of a CaCO3 crystal in problems of generating bessel vortex beams by heating

  • Optical Information Technologies
  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

The transformation of zero-order Bessel beams to a second-order Bessel vortex beam in a c-cut CaCO3 crystal has been studied experimentally. It has been shown that it is possible to control the beam transformation in the crystal during heating. The influence of the thermo-optic effect and the linear thermal expansion of the crystal on the transformation of the Bessel beam is explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Matsuoka, Y. Kizuka, and T. Inoue, “The Characteristics of Laser Micro-Drilling,” Appl. Phys. A 84 (4), 423–430 (2006).

    Article  ADS  Google Scholar 

  2. E. Cagniot, M. Fromager, T. Godin, et al., “Transverse Superresolution Technique Involving Rectified Laguerre–Gaussian LG(p)0 Beams,” JOSA A 28 (8), 1709–1715 (2011).

    Article  ADS  Google Scholar 

  3. S. H. Tao, W. M. Lee, and X. C. Yuan, “Dynamic Optical Manipulation with a High-Order Fractional Bessel Beam Generated from a Spatial Light Modulator,” Opt. Lett. 28 (20), 1867–1869 (2003).

    Article  ADS  Google Scholar 

  4. V. Garces-Chavez, K. Volke-Sepulveda, S. Chavez-Cerda, et al., “Transfer of Orbital Angular Momentum to an Optically Trapped Low-Index Particle,” Phys. Rev. A 66 (6), 063402 (2002).

    Article  ADS  Google Scholar 

  5. R. V. Skidanov and M. A. Rykov, “Superposition of Vortex Light Beams for Trapping and Moving Biological Micro-Objects,” Computer Optics 34 (3), 431–435 (2013).

    Google Scholar 

  6. N. A. Khilo, E. S. Petrova, and A. A. Ryzhevich, “Transformation of the Order of Bessel Beams in Uniaxial Crystals,” Kvant. Elektronika 31 (1), 85–89 (2001).

    Article  ADS  Google Scholar 

  7. M. A. Stepanov, “Transformation of Bessel Beams under Internal Conical Refraction,” Opt. Commun. 212 (1), 11–16 (2002).

    Article  ADS  Google Scholar 

  8. D. H. Zusin, R. Maksimenka, V. V. Filippov, et al., “Bessel Beam Transformation by Anisotropic Crystals,” JOSA A. 27 (8), 1828–1833 (2010).

    Article  ADS  Google Scholar 

  9. S. N. Khonina, D. G. Volotovskii, and S. I. Kharitonov, “Features of Nonparaxial Propagation of Gaussian and Bessel Modes along the Axis of the Crystal,” Computer Optics 37 (3), 297–306 (2013).

    Google Scholar 

  10. S. N. Khonina, A. A. Morozov, and S. V. Karpeev, “Effective Transformation of a Zero-Order Bessel Beam into a Second-Order Vortex Beam using a Uniaxial Crystal,” Laser Phys. 24 (5), 056101–056105 (2014).

    Article  ADS  Google Scholar 

  11. S. N. Khonina, V. D. Paranin, S. V. Karpeev, and A. A. Morozov, “Study of Polarization Transformation and Interaction of Ordinary and Extraordinary Beams in a Nonparaxial Regime,” Computer Optics 38 (4), 598–605 (2014).

    Google Scholar 

  12. W. Zhu and W. She, “Electrically Controlling Spin and Orbital Angular Momentum of a Focused Light Beam in a Uniaxial Crystal,” Opt. Express 20 (23), 25876–25883 (2012).

    Article  ADS  Google Scholar 

  13. W. Zhu and W. She, “Electro-Optically Generating and Controlling Right- and Left-Handed Circularly Polarized Multiring Modes of Light Beams,” Opt. Lett. 37 (14), 2823–2825 (2012).

    Article  ADS  Google Scholar 

  14. I. K. Kikoin, Tables of Physical Quantities: A Handbook (Atomizdat, Moscow, 1976) [in Russian].

    Google Scholar 

  15. E. Palik, Handbook of Optical Constants of Solids (Academic Press, Maryland, 1997).

    Google Scholar 

  16. A. G. Poleshchuk, V. P. Korolkov, A. G. Sedukhin, A. R. Sametov, and R. V. Shimanskii, “Direct Laser Writing of Gray-Scale Microimages with a Large Dynamic Range in Chromium Films,” Avtometriya 51 (3), 87–93 (2015) [Optoelectron., Instrum. Data Process. 51 (3), 287–292 (2015)].

    Google Scholar 

  17. V. P. Korol’kov, “Sensitivity of an Optimized Contour Mask Technique to Errors in Fabricating Piecewise Continuous Relief Diffractive Optical Elements,” Avtometriya 50 (1), 9–19 (2014) [Optoelectron., Instrum. Data Process. 50 (1), 6–15 (2014)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Paranin.

Additional information

Original Russian Text © V.D. Paranin, S.N. Khonina, S.V. Karpeev, 2016, published in Avtometriya, 2016, Vol. 52, No. 2, pp. 81–87.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paranin, V.D., Khonina, S.N. & Karpeev, S.V. Control of the optical properties of a CaCO3 crystal in problems of generating bessel vortex beams by heating. Optoelectron.Instrument.Proc. 52, 174–179 (2016). https://doi.org/10.3103/S8756699016020102

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699016020102

Keywords

Navigation