Skip to main content
Log in

Determination of the center composition of gradient-activated lithium niobate crystals doped with magnesium and chromium

  • Optical Information Technologies
  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

Investigations of the defect structure of a gradient-activated stoichiometric LiNbO3:Mg2+, Cr3+ crystal, in which the chromium concentration has a constant value of 0.1 at. % along the crystal growth axis, and the magnesium concentration changes smoothly from 5.5 to 2.0 al. %. The threshold concentration of Mg2+ ions (2.35 at. %) in these crystals with a concentration width of change in the center composition (Cr optical center and its nearest neighbors) of 0.09 at. % Mg2+ ions is established..

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. D. Ivanov and E. G. Kostsov, “Thermal Detectors of Uncooled Multi-Element Infrared Imaging Arrays. I. Thermally Insulated Elements,” Avtometriya 51 (6), 79–88 (2015) [Optoelectron., Instrum. Data Process. 51 (6), 601–608 (2015)].

    Google Scholar 

  2. G. Corradi H. Sothe, J.-M. Spaeth, and K. Polgar, “Electron Spin Resonance and Electron-Nuclear Double-Resonance Investigation of a New Cr3+ Defect on an Nb Site in LiNbO3:Mg:Cr,” J. Phys. Condens. Matter. 3 (12), 1901–1908 (1991).

    Article  ADS  Google Scholar 

  3. E. Camarillo, J. Tocho, T. Vergara, et al., “Optical Bands of Cr3+ Induced by Mg2+ Ions in LiNbO3:Cr, Mg,” Phys. Rev. B 45 (9), 4600–4604 (1992).

    Article  ADS  Google Scholar 

  4. A. Martin, F. J. Lopez, and F. Agullo-Lopez, “Cr3+ in Pure and Mg-Doped LiNbO3: Analysis of the EPR and Optical Spectra,” J. Phys. Condens. Matter. 4 (3), 847–853 (1992).

    Article  ADS  Google Scholar 

  5. F. Jaque, J. Garcia-Solé, E. Camarillo, et al., “Detection of Cr3+ Sites in LiNbO3:MgO, Cr3+ and LiNbO3:Cr3+,” Phys. Rev. B 47 (9), 5432–5434 (1993).

    Article  ADS  Google Scholar 

  6. G. A. Torchia, J. A. Sanz-Garcia, F. J. López, et al., “Compositional Effect on Cr3+ Site Distribution in MgO or ZnO Codoped LiNbO3:Cr Congruent and Stoichiometric Crystals,” J. Phys. Condens. Matter. 10 (21), L341–L345 (1998).

    Article  ADS  Google Scholar 

  7. A. Kamínska, J. E. Dmochowski, A. Suchocki, et al., “Luminescence of LiNbO3:MgO, Cr Crystals under High Pressure,” Phys. Rev. B 60 (1), 7707–7710 (1999).

    Article  ADS  Google Scholar 

  8. F. Lhommé, P. Bourson, K. Polgarb, et al., “Study of the Luminescence Spectra of LiNbO3:Cr3+:Mg2+: Effect of the Concentration of Mg2+,” Radiation Effects and Defects in Solids 150 (1–4), 265–269 (1999).

    Article  ADS  Google Scholar 

  9. G. Malovichko, V. Grachev, E. Kokanyan, and O. Schirmer, “Axial and Low-Symmetry Centers of Trivalent Impurities in Lithium Niobate: Chromium in Congruent and Stoichiometric Crystals,” Phys. Rev. B 59 (14), 9113–9125 (1999).

    Article  ADS  Google Scholar 

  10. G. M. Salley, S. A. Basun, A. A. Kaplyanskii, et al., “Chromium Centers in Stoichiometric LiNbO3,” J. Luminescence 87–89, 1133–1135 (2000).

    Article  Google Scholar 

  11. A. Kamínska, A. Suchocki, M. Grinberg, et al., “High-Pressure Spectroscopy of LiNbO3:MgO, Cr3+ Crystals,” J. Luminescence 87–89, 571–573 (2000).

    Article  Google Scholar 

  12. T. P. J. Han, F. Jaque, V. Bermudez, and E. Dieguez, “Luminescence of the Cr3+ R-Lines in Pure and MgO Co-Doped Near Stoichiometric LiNbO3:Cr Crystals,” Chem. Phys. Lett. 369 (Is. 5–6), 519–524 (2003).

    Article  ADS  Google Scholar 

  13. V. V. Galutskiy, E. V. Stroganova, and V. I. Vatlina, “Growth of Single Crystal with a Gradient of Concentration of Impurities by the Czochralski Method using Additional Liquid Charging,” J. Crystal Growth 311 (4), 1190–1194 (2009).

    Article  ADS  Google Scholar 

  14. V. V. Galutskii, E. V. Stroganova, and N. A. Yakovenko, “Spectral Separation of Cr3+ Optical Centers in Stoichiometric Magnesium-Doped Lithium Niobate Crystals,” Optika Spektroskop. 110 (3), 436–442 (2011).

    Google Scholar 

  15. G. A. Torchia, O. Martinez Matosa, P. Vaveliuk, and J. O. Tochob, “Influence of the Electron-Lattice Coupling for Cr3+ Ions in Nb5+ Site into Congruent Co-Doped LiNbO3:Cr3+:ZnO Crystal,” Solid State Commun. 127 (8), 535–539 (2003).

    Article  ADS  Google Scholar 

  16. M. N. Palatnikov, V. A. Sandler, N. V. Sidorov, et al., “Spontaneous Unipolarity and Anomalies of Dielectric and Piezoelectric Properties and Conductivity of Initially Multidomain Heavily Doped Crystals of LiNbO3:Zn,” Fiz. Tverd. Tela 57 (8), 1515–1520 (2015).

    Google Scholar 

  17. N. V. Sidorov, T. R. Volk, B. N. Mavrin, and V. T. Kalinnikov, Lithium Niobate: Defects, Photorefraction, Vibrational Spectrum, and Polaritons (Nauka, Moscow, 2003) [in Russian].

    Google Scholar 

  18. F. Lhommé, P. Bourson, G. Boulon, et al., “Comparative Analysis of the Cr3+ Centre Spectroscopic Properties in LiNbO3 Crystals from Congruent to Nearly Stoichiometric Compositions,” Eur. Phys. J. AP 20 (1), 29–40 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Stroganova.

Additional information

Original Russian Text © E.V. Stroganova, V.V. Galutskii, K.V. Sudarikov, D.A. Rasseikin, N.A. Yakovenko, 2016, published in Avtometriya, 2016, Vol. 52, No. 2, pp. 73–80.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stroganova, E.V., Galutskii, V.V., Sudarikov, K.V. et al. Determination of the center composition of gradient-activated lithium niobate crystals doped with magnesium and chromium. Optoelectron.Instrument.Proc. 52, 167–173 (2016). https://doi.org/10.3103/S8756699016020096

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699016020096

Keywords

Navigation