Skip to main content
Log in

Control of dissipative solitons in a waveguide trap

  • Modeling in Physical and Technical Research
  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

A planar package of waveguides with heterogeneously implanted impurity resonance atoms is considered. The conditions of formation of dissipative solitons due to a competition of Kerr saturating nonlinearity and diffraction in the waveguide traps formed by impurity media are determined. It is shown that applying a constant electric field to an impurity resonance medium with a constant dipole moment makes it possible to control the propagation of solitons in Y-shaped waveguide traps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Giorgini, L. Pitaevskii, and S. Stringari, “Theory of Ultracold Atomic Fermi Gases,” Rev. Mod. Phys. 80 (4), 1215–1274 (2008).

    Article  ADS  Google Scholar 

  2. D. P. Trauernicht, A. Mysyrowicz, and J. P. Wolfe, “Strain Confinement and Thermodynamics of Free Excitons in a Direct-Gap Semiconductor,” Phys. Rev. B 28 (6), 3590–3592 (1983).

    Article  ADS  Google Scholar 

  3. M. D. Sturge, P. Grabbe, J. P. Harbison, et al., “Strain-Induced Lateral Confinement of Excitons in GaAs-AlGaAs quantum well microstructures,” Appl. Phys. Lett. 53, (9), 782–791 (1988).

    Article  ADS  Google Scholar 

  4. S. Zimmermann, A. O. Govorov, W. Hansen, et al., “Lateral Superlattices as Voltage-Controlled Traps for Excitons,” Phys. Rev. B 56 (20), 13414–13421 (1997).

    Article  ADS  Google Scholar 

  5. T. Huber, A. Zrenner, W. Wegscheider, and M. Bichler, “Electrostatic Exciton Traps,” Phys. Status Solidi A 166 (1), R5–R6 (1998).

    Article  ADS  Google Scholar 

  6. J. Krau, J. P. Kotthaus, A. Wixforth, et al., “Capture and Release of Photonic Images in a Quantum Well,” Appl. Phys. Lett. 85 (24), 5830–5832 (2004).

    Article  ADS  Google Scholar 

  7. G. C. Valley, M. Segev, B. Crosignani, et al., “Dark and Bright Photovoltaic Spatial Solitons,” Phys. Rev. A 50 (6), R4457–R4460 (1994).

    Article  ADS  Google Scholar 

  8. B. Crosignani, E. DelRe, P. Di Porto, et al., “Self-Focusing and Self-Trapping in Unbiased Centrosymmetric Photorefractive Media,” Opt. Lett. 23 (12), 912–914 (1998).

    Article  ADS  Google Scholar 

  9. M. Chauvet, S. A. Hawkins, G. J. Salamo, et al., “Self-Trapping of Planar Optical Beams by Use of the Photorefractive Effect in InP: Fe,” Opt. Lett. 21 (7), 1333–1335 (1996).

    Article  ADS  Google Scholar 

  10. D. N. Christodoulides and R. I. Joseph, “Discrete Self-Focusing in Nonlinear Arrays of Coupled Waveguides,” Opt. Lett. 13 (9), 794–796 (1988).

    Article  ADS  Google Scholar 

  11. H. S. Eisenberg, Y. Silberberg, R. Morandotti, et al., “Discrete Spatial Optical Solitons in Waveguide Arrays,” Phys. Rev. Lett. 81 (16), 3383–3386 (1998).

    Article  ADS  Google Scholar 

  12. W. Chen and D. L. Mills, “Gap Solitons and the Nonlinear Optical Response of Superlattices,” Phys. Rev. Lett. 58 (2), 160–163 (1987).

    Article  ADS  Google Scholar 

  13. J. E. Sipe and H. G. Winful, “Nonlinear Schroedinger Solitons in a Periodic Structure,” Opt. Lett. 13 (2), 132–133 (1988).

    Article  ADS  Google Scholar 

  14. A. A. Zabolotskii, “Ultrashort Pulses of an Electromagnetic Field in a Planar Waveguide Array with Two-Level Systems,” Pis’ma Zh. Eksper. Teoret. Fiz. 94 (12), 918–920 (2009) [Journal of Experimental and Theoretical Physics Letters 94 (12), 837–839 (2009)].

    Google Scholar 

  15. S. De Boer and D. A. Wiersma, “Dephasing-Induced Damping of Superradiant Emission in J-Aggregates,” Chem. Phys. Lett. 165 (1), 45–53 (1990).

    Article  ADS  Google Scholar 

  16. J-Aggregates, Ed. by T. Kobayashi (Word Scientific, Singapore, 1996).

  17. E. V. Doktorov and R. A. Vlasov, “Optical Solitons in Media with Resonant and Non-Resonant Self-Focusing Nonlinearities,” Opt. Acta 30 (2), 220–232 (1983).

    Article  ADS  Google Scholar 

  18. A. I. Maimistov and E. A. Manykin, “Propagation of Ultrashort Optical Pulses in a Resonance Waveguide,” Zh. Eksper. Teoret. Fiz. 85 (10), 1177–1181 (1983).

    ADS  Google Scholar 

  19. A. A. Zabolotskii, “Self-Localization of Excitons and Nonlinear Optical Properties of J-Aggregates in a Thin Periodic Medium,” Zh. Eksper. Teoret. Fiz. 133 (2), 466–476 (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Zabolotskii.

Additional information

Original Russian Text © A.A. Zabolotskii, 2015, published in Avtometriya, 2015, Vol. 51, No. 2, pp. 61–70.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zabolotskii, A.A. Control of dissipative solitons in a waveguide trap. Optoelectron.Instrument.Proc. 51, 155–163 (2015). https://doi.org/10.3103/S8756699015020089

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699015020089

Keywords

Navigation