Optimization tools of parallel simulation of nanostructures with quantum dots

  • K. V. Pavskii
  • M. G. Kurnosov
  • A. Yu. Polyakov
Numerical Simulation of The Growth Processes, Strain Fields, and Energy Spectrum of Nanoheterostructures


Tools for optimizing the performance of parallel programs on multi-architectural distributed computing systems are considered. A method for optimizing the embedding of parallel MPI-program into computing clusters with a hierarchical communication network structure is described. An adaptive approach to the delta optimization of restore points is proposed for effective fault-tolerant simulation on distributed computing systems.


parallel program embedding fault tolerance parallel programming computing systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Novikov, Zh. Smagina, D. Vlasov, et al., “Space Arrangement of Ge Nanoislands Formed by Growth of Ge on Pit-Patterned Si Substrates,” J. Crystal Growth. 323(1), 198–200 (2011).ADSCrossRefGoogle Scholar
  2. 2.
    A. V. Nenashev and A. V. Dvurechenskii, “Strain Distribution in Quantum Dot of Arbitrary Polyhedral Shape: Analytical Solution,” J. Appl. Phys. 107(6), 064322 (2010).Google Scholar
  3. 3.
    V. G. Khoroshevskii, “Distributed Computing Systems with Programmable Structure,” Vestn. Sib. Gos. Univ. Telekom. Inform. 2(10), 3–41 (2010).Google Scholar
  4. 4.
    S. V. Shidlovskii, V. I. Syryamkin, and V. S. Shidlovskii, “Tunable Computing Media in Multivariable Control System,” Telekommunikatsii, No. 10, 28–32 (2010).Google Scholar
  5. 5.
    F. Broquedis, J. Clet-Ortega, S. Moreaud, et al., “hwloc: A Generic Framework for Managing Hardware Affinities in HPC Applications,” in 18th Intern. Conf. on Parallel, Distributed and Network-Based Processing, Pisa, Italy, 17–19 Feb., 2010, pp. 180–186.Google Scholar
  6. 6.
    T. Hoefler and M. Snir, “Generic Topology Mapping Strategies for Large-Scale Parallel Architectures,” in Proc. of the ACM Intern. Conf. on Supercomputing, Tucson, USA, June, 2011, pp. 75–85.Google Scholar
  7. 7.
    P. Balaji, R. Gupta, A. Vishnu, and P. Beckman, “Mapping Communication Layouts to Network Hardware Characteristics on Massive-Scale Blue Gene Systems,” J. Comput. Sci. Res. Dev. 26(3), 247–256 (2011).CrossRefGoogle Scholar
  8. 8.
    V. Schroeder and G. A. Gibson, “A Large-Scale Study of Failures in High-Performance Computing Systems,” in Proc. of the Intern. Conf. on Dependable Systems and Networks, Philadelphia, USA, June 25–28, 2006, pp. 249–258.Google Scholar
  9. 9.
    J. Ansel, K. Arya, and G. Cooperman, DMTCP: Transparent “Checkpointing for Cluster Computations and the Desktop,” in Proc. of the IEEE Intern. Parallel and Distributed Processing Symposium (IEEE Press, 2009), pp. 1–12.Google Scholar
  10. 10.
    S. A. Kiswany, M. Ripeanu, S. S. Vazhkudai, and A. Gharaibeh, “stdchk: A Checkpoint Storage System for Desktop Grid Computing,” in Proc. of the 28th Intern. Conf. on Distributed Computing Systems (Washington, IEEE Computer Society, 2008), pp. 613–624.Google Scholar
  11. 11.
    C. Wang, F. Mueller, C. Engelmann, and S. L. Scott, “Hybrid Checkpointing for MPI Jobs in HPC Environments,” in Proc. of the 16th IEEE Intern. Conf. on Parallel and Distributed Systems (Washington, IEEE, 2010), pp. 524–533.Google Scholar

Copyright information

© Allerton Press, Inc. 2014

Authors and Affiliations

  • K. V. Pavskii
    • 1
    • 2
  • M. G. Kurnosov
    • 1
    • 2
  • A. Yu. Polyakov
    • 1
    • 2
  1. 1.Rzhanov Institute of Semiconductor Physics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Siberian State University of Telecommunications and Information SciencesNovosibirskRussia

Personalised recommendations