Skip to main content
Log in

New microelectromechanical cavities for gigahertz frequencies

  • Physical and Engineering Fundamentals of Microelectronics and Optoelectronics
  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

A possibility of creating micrometer-sized microelectromechanical cavities operating at gigahertz frequencies is considered. A thin film of a dielectric (ferroelectric) with a high dielectric permeability and electric strength is included into the cavity structure. Specific features of device operation and its structure are described by a mathematical model that allows one to find exact relations between the parameters characterizing natural oscillations of the moving element and the triggering voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. G. Kostsov, “Status and Prospects of Micro- and Nanoelectromechanics,” Avtometriya 45(3), 3–52 (2009). [Optoelectron., Instrum. Data Process. 45 (4), 189–226 (2009)].

    Google Scholar 

  2. Ya. S. Grinberg, Yu. A. Pashkin, and E. V. Il’ichev, “Nanomechanical cavities,” Usp. Fiz. Nauk 182(4), 407–436 (2012).

    Article  Google Scholar 

  3. V. Cimalla, F. Niebelschütz, K. Tonisch, et al., “Nanoelectromechanical Devices for Sensing Applications,” Sensors and Actuators B 126(1), 24–34 (2007).

    Article  Google Scholar 

  4. A. Cagliani and Z. J. Davis, “Ultrasensitive Bulk Disk Microresonator-Based Sensor for Distributed Mass Sensing,” J. Micromech. Microeng. 21(4), 045016 (2011).

    Article  ADS  Google Scholar 

  5. K. Tappura, P. Pekko, and H. Sepp, “High-Q Micromechanical Resonators for Mass Sensing in Dissipative Media,” J. Micromech. Microeng. 21(6), 065002 (2011).

    Article  ADS  Google Scholar 

  6. E. G. Kostsov, “Nanoelectromechanical Systems, NEMS,” in Encyclopedia of Life Support Systems. Vol. Nanoscience and Nanotechnologies (UNESCO-EOLSS Publishers, 2010), pp. 662–676.

    Google Scholar 

  7. M. Lu, X. Lu, M.-W. Jang, et al., “Characterization of Carbon Nanotube Nanoswitches with Gigahertz Resonance Frequency and Low Pull-In Voltages Using Electrostatic Force Microscopy,” J. Micromech. Microeng. 20(10), 105016 (2010).

    Article  ADS  Google Scholar 

  8. E. G. Kostsov, “Ferroelectric-Based Electrostatic Micromotors with Nanometer Gaps,” IEEE Trans. Ultrasonics, Ferroelectric and Frequency Control 53(12), 2294–2299 (2006).

    Article  Google Scholar 

  9. I. L. Baginsky and E. G. Kostsov, “High Energy Output MEMS Based on Thin Layers of Ferroelectric Materials,” Ferroelectrics 351(1), 69–78 (2007).

    Article  Google Scholar 

  10. H. Takamatsu and T. Sugiura, “Nonlinear Vibration of Electrostatic MEMS under DC and AC Applied Voltage,” in Proc. of the Intern. Conf. on MEMS, NANO and Smart Systems (ICMENS’05), pp. 423–424.

  11. W.-C. Chen, W. Fang, and S.-S. Li, “A Generalized CMOS-MEMS Platform for Micromechanical Resonators Monolithically Integrated with Circuits,” J. Micromech. Microeng. 21(6), 065012 (2011).

    Article  ADS  Google Scholar 

  12. E. Colinet, J. Juillard, S. Guessab, and R. Kielbasa, “Actuation of Resonant MEMS Using Short Pulsed Forces,” Sensors and Actuators A 115(1), 118–125 (2004).

    Article  Google Scholar 

  13. K. L. Phan, R. H. B. Fey, J. Hulshof, et al., “Amplitude Saturation of MEMS Resonators Explained by Autoparametric Resonance,” J. Micromech. Microeng. 20(10), 105012 (2010).

    Article  Google Scholar 

  14. M.-C. M. Lee and M. C. Wu, “Tunable Coupling Regimes of Silicon Microdisk Resonators Using MEMS Actuators,” Opt. Express. 14(11), 4703–4712 (2006).

    Article  MathSciNet  ADS  Google Scholar 

  15. D.-A. Mendels, M. Lowe, A. Cuenat, et al., “Dynamic Properties of AFM Cantilevers and the Calibration of their Spring Constants,” J. Micromech. Microeng. 16(8), 1720–1733 (2006).

    Article  ADS  Google Scholar 

  16. V. A. Gridchin and V. P. Dragunov, Physics of Microsystems: Tutorial, Pt 1 (Izd. Nov. Goz. Tekhn., Univ., Novosibirsk, 2004) [in Russian].

    Google Scholar 

  17. A. A. Andronov, A. A. Vitt, and S. E. Khaikin, Theory of Oscillations (Fizmatgiz, Moscow, 1959) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Kostsov.

Additional information

Original Russian Text © E.G. Kostsov, S.I. Fadeev, 2013, published in Avtometriya, 2013, Vol. 49, No. 2, pp. 115–122.

About this article

Cite this article

Kostsov, E.G., Fadeev, S.I. New microelectromechanical cavities for gigahertz frequencies. Optoelectron.Instrument.Proc. 49, 204–210 (2013). https://doi.org/10.3103/S8756699013020143

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699013020143

Keywords

Navigation