Skip to main content
Log in

Terahertz microlens array emitter based on the transverse Dember cross effect

  • Physical and Engineering Fundamentals of Microelectronics and Optoelectronics
  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

A new method for generating terahertz radiation by exposure to femtosecond laser pulses on the semiconductor surface is proposed. The essence of this method is that the exciting radiation intensity is subjected to spatial modulation by using a microlens array and by shading a part of the semiconductor surface by metal stripes. This gives rise to a concentration gradient of photo carriers along the surface at the sharp boundary of the metallic coating in the semiconductor (transverse Dember photoelectric effect), and its relaxation for times of ∼1 ps results in the emission of electromagnetic pulses of the terahertz range. A terahertz emitter model based on the proposed method was developed and designed, its efficiency was demonstrated, and methods for increasing its efficiency were considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Nuss and J. Orenstein, “Terahertz time-domain spectroscopy,” Millimeter and Submillimeter Wave Spectroscopy of Solids, Ed. by G. Grüner (Springer, Berlin-Heidelberg, 1998), Vol. 74, pp. 7–50.

    Chapter  Google Scholar 

  2. X.-C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, “Generation of Femtosecond Electro-Magnetic Pulses from Semiconductor Surfaces,” Appl. Phys. Lett. 56(11), 1011–1013 (1990).

    Article  ADS  Google Scholar 

  3. A. Krotkus, “Semiconductors for Terahertz Photonics Applications,” J. Phys. D. Appl. Phys. 43(27), 273001 (2010).

    Article  ADS  Google Scholar 

  4. M. B. Johnston, D. M. Whittaker, A. Corchia, et al., “Theory of Magnetic-Field Enhancement of Surface-Field Terahertz Emission,” J. Appl. Phys. 91(4), 2104–2106 (2002).

    Article  ADS  Google Scholar 

  5. G. Klatt, F. Hilser, W. Qiao, et al., “Terahertz Emission from Lateral Photo-Dember Currents,” Opt. Express. 18(5), 4939–4947 (2010).

    Article  ADS  Google Scholar 

  6. J. Kato, N. Takeyasu, Y. Adachi, et al., “Multiple-Spot Parallel Processing for Laser Micronano-Fabrication,” Appl. Phys. Lett. 86(4), 044102 (2005).

    Article  ADS  Google Scholar 

  7. S. Hasegawa, Y. Hayasaki, and N. Nishida, “Holographic Femtosecond Laser Processing with Multiplexed Phase Fresnel Lenses,” Opt. Lett. 31(11), 1705–1707 (2006).

    Article  ADS  Google Scholar 

  8. A. Lasagni, D. Yuan, P. Shao, and S. Das, “Rapid Fabrication of Biocompatible Hydrogels Micro-Devices using Laser Interference Lithography,” Proc. SPIE 7365, 73650I.

  9. A. W. Lohmann and J. A. Thomas, “Making an Array Illuminator Based on the Talbot Effect,” Appl. Opt. 29, 4337–4340 (1990).

    Article  ADS  Google Scholar 

  10. V. P. Korolkov, R. K. Nasyrov, and R. V. Shimansky, “Zone-Boundary Optimization for Direct Laser Writing of Continuous-Relief Diffractive Optical Elements,” Appl. Opt. 45(1), 53–62 (2006).

    Article  ADS  Google Scholar 

  11. V. D. Antsygin, A. A. Mamrashev, N. A. Nikolaev, and O. I. Potaturkin, “Small-Size Terahertz Spectrometer Using the Second Harmonic of a Femtosecond Fiber Laser,” Avtometriya 46(3), 110–117 (2010) [Optoelectron., Instrum. Data Process. 46 (3), 294–300 (2010)].

    Google Scholar 

  12. A. A. Mamrashev, O. I. Potaturkin, “Characteristics of the System of Polarization-Optical Detection of a Pulsed Terahertz Spectrometer,” Avtometriya 47(4), 16–22 (2011) [Optoelectron., Instrum. Data Process. 47 (4), 332–337 (2011)].

    Google Scholar 

  13. D. M. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-Infrared Time-Domain Spectroscopy with Terahertz Beams of Dielectrics and Semiconductors,” JOSA B 7(10), 2006–2015 (1990).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Konchenko.

Additional information

Original Russian Text © V.D. Antsygin, A.S. Konchenko, V.P. Korol’kov, A.A. Mamrashev, N.A. Nikolaev, O.I. Potaturkin, 2013, published in Avtometriya, 2013, Vol. 49, No. 2, pp. 92–97.

About this article

Cite this article

Antsygin, V.D., Konchenko, A.S., Korol’kov, V.P. et al. Terahertz microlens array emitter based on the transverse Dember cross effect. Optoelectron.Instrument.Proc. 49, 184–188 (2013). https://doi.org/10.3103/S8756699013020118

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699013020118

Keywords

Navigation