Skip to main content
Log in

Solution of the problem of phase ambiguity by integer interferometry

  • Analysis and Synthesis of Signals and Images
  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

An Errata to this article was published on 01 May 2013

Abstract

An automatic method is proposed to resolve phase ambiguity in interpreting fringe patterns by a series of two phase distributions with different periods. The method does not require identification of local phase transitions in adjacent image regions and can determine the total phase at each point separately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. L. Andrews, Structured Light and Its Applications. An Introduction to Phase-Structured Beams and Nanoscale Optical Forces (Academic Press, 2008).

    Google Scholar 

  2. G. Rajshekhar, S. S. Gorthi, and P. Rastogi, “Estimation of Dynamically Varying Displacement Derivatives using Fringe Projection Technique,” Appl. Opt. 50(3), 282–286 (2011).

    Article  ADS  Google Scholar 

  3. Y. Wang, K. Liu, D. L. Lau et al., “Maximum SNR Pattern Strategy for Phase Shifting Methods in Structured Light Illumination,” JOSA A. 27(9), 1962–1971 (2010).

    Article  ADS  Google Scholar 

  4. F. M’erideau, L. A. S. Secades, and G. Eren, et al., “3-D Scanning of Nonopaque Objects by Means of Imaging Emitted Structured Infrared Patterns,” IEEE Trans. Instrum. Meas., 59(11), 2898–2906 (2010).

    Article  Google Scholar 

  5. E. Steger and K. N. Kutulakos, “A Theory of Refractive and Specular 3D Shape by Light-Path Triangulation,” Intern. Journ. Comput. Vis. 76(1), 13–29 (2008).

    Google Scholar 

  6. T. Peng and S. K. Gupta, “Model and Algorithms for Point Cloud Construction using Digital Projection Patterns,” Journ. Comput. and Inform. Sci. Eng. 7(4), 372–381 (2007).

    Article  MathSciNet  Google Scholar 

  7. O. K. Yilmaz, S. Ozder, P. Demir, “Two-Dimensional Fringe Projection for Three-Dimensional Shape Measurements by using the CWT Phase Gradient Method,” Avtometriya 47(2), 33–45 (2011) [Optoelectron., Instrum. Data Process. 47 (2), 130–140 (2011)].

    Google Scholar 

  8. K. Creath, “Phase-Measurement Interferometry Techniques,” Progr. Opt. 26, 349–393 (1988).

    Article  Google Scholar 

  9. V. I. Guzhov and S. P. Il’inykh, Computer Interferometry (Izd. NGTU, Novosibirsk, 2004) [in Russian].

    Google Scholar 

  10. S. P. Il’inykh and V. I. Guzhov, “A Generalized Decoding Algorithm Interferograms using Phase Stepping,” Avtometriya 38(3), 123–126 (2002).

    Google Scholar 

  11. V. I. Guzhov, S. P. Il’inykh, D.S. Khaidukov, and A.R. Vagizov, “Universal Decoding Algorithm,” Nauch. Vestn NGTU, 41(4), 51–58 (2010).

    Google Scholar 

  12. C. Guan, L. Hassebrook, and D. Lau, “Composite Structured Light Pattern for Three-Dimensional Video,” Opt. Express. 11(5), 406–417 (2003).

    Article  ADS  Google Scholar 

  13. D. Ghiglia and M. Pritt, Two-Dimensional Phase Unwrapping Theory, Algorithms and Software (John Wiley & Sons, 1998)

    MATH  Google Scholar 

  14. F. Qiangian, P. M. Meaney, and K. D. Paulsen, “The Multidimensional Phase Unwrapping Integral and Applications to Microwave Tomographical Image Reconstruction,” IEEE Trans. Image Process. 15(11), 3311–3324 (2006).

    Article  ADS  Google Scholar 

  15. V. I. Guzhov, S. P. Il’inykh, and E. V. Kartavykh, “Systematic Error Correction in Determining the Total Phase in Integer Interferometry,” Avtometriya 44(6), 96–102 (2008) [Optoelectron., Instrum. Data Process. 44 (6), 552–556 (2008)].

    Google Scholar 

  16. J. V. Uspensky and M. A. Heaslet, Elementary Number Theory (McGraw-Hill, Mew York, 1939).

    Google Scholar 

  17. V. I. Guzhov, S. P. Il’inykh, and A. I. Ubert, “Projection Method for Measuring Topography,” Nauch. Vestn. NGTU 46(1), 23–28 (2012).

    Google Scholar 

  18. V. I. Guzhov, S. P. Il’inykh, A. R. Vagizov, and R. A. Kuznetsov, “Increasing of Accuracy of Definition of Coordinates in Robotic Vision,” in Proc. of the 2nd Russian-Indian Joint Workshop on Computational Intelligence and Modern Heuristics in Automation and Robotics (NSTU, Novosibirsk, 2011), pp. 184–187.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Guzhov.

Additional information

Original Russian Text © I.I. Guzhov, S.P. Il’inykh, R.A. Kuznetsov, A.R. Vagizov, 2013, published in Avtometriya, 2013, Vol. 49, No. 2, pp. 85–91.

About this article

Cite this article

Guzhov, I.I., Il’inykh, S.P., Kuznetsov, R.A. et al. Solution of the problem of phase ambiguity by integer interferometry. Optoelectron.Instrument.Proc. 49, 178–183 (2013). https://doi.org/10.3103/S8756699013020106

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699013020106

Keywords

Navigation