Skip to main content
Log in

Raman Evaluation of the Crystallinity Degree of Poly(L-Lactide)-Based Materials

  • OPTICAL AND ELECTRON SPECTROSCOPY OF CRYSTALS
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

We carried out a Raman study of a series of poly(L-lactide) (PLLA) samples annealed for different periods of time and therefore having different crystallinity degree. We compared the results with our recent study of the series of poly(L-lactide-co-ε-caprolactone) (PLCL) copolymers with the ε-caprolactone (CL) content ranging from 5 to 30 mol %. X-ray diffraction (XRD) analysis showed that the crystallinity degree of the analyzed PLLA-based materials is in the range of 0–86%. We suggest using the ratio of the peak intensities of the PLLA Raman bands at 411 and 874 cm–1 to evaluate the crystallinity degree of PLLA homopolymers as well as PLLA blocks in the PLCL copolymers. This ratio does not depend on the CL content in the copolymers, it strongly depends on the crystallinity degree of PLLA (PLLA blocks in the PLCL copolymers) and it is a linear function of the crystallinity degree, measured by XRD analysis. We carried out quantum chemical calculations of the optimized geometries and Raman spectra of PLLA oligomers in the conformation of helix 103 with the number of monomeric units from 5 to 12. The results of the calculations revealed that the ratio of the intensities of the bands at 411 and 874 cm–1 weakly depends on the oligomer length for the number of the PLLA monomeric units more than 7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. O. V. Arzhakova, M. S. Arzhakov, E. R. Badamshina, E. B. Bryuzgina, E. V. Bryuzgin, A. V. Bystrova, G. V. Vaganov, V. V. Vasilevskaya, A. Yu. Vdovichenko, M. O. Gallyamov, R. A. Gumerov, A. L. Didenko, V. V. Zefirov, S. V. Karpov, P. V. Komarov, V. G. Kulichikhin, S. A. Kurochkin, S. V. Larin, A. Ya. Malkin, S. A. Milenin, A. M. Muzafarov, V. S. Molchanov, A. V. Navrotskiy, I. A. Novakov, E. F. Panarin, I. G. Panova, I. I. Potemkin, V. M. Svetlichny, N. G. Sedush, O. A. Serenko, S. A. Uspenskii, O. E. Philippova, A. R. Khokhlov, S. N. Chvalun, S. S. Sheiko, A. V. Shibaev, I. V. Elmanovich, V. E. Yudin, A. V. Yakimansky, and A. A. Yaroslavov, “Polymers for the future,” Russ. Chem. Rev. 91 (12), RCR5062 (2022). https://doi.org/10.57634/RCR5062

    Article  Google Scholar 

  2. V. I. Gomzyak, N. G. Sedush, A. A. Puchkov, D. K. Polyakov, and S. N. Chvalun, “Linear and branched lactide polymers for targeted drug delivery systems,” Polym. Sci., Ser. B 63 (3), 257–271 (2021). https://doi.org/10.1134/S1560090421030064

    Article  Google Scholar 

  3. N. G. Sedush, Y. A. Kadina, E. V. Razuvaeva, A. A. Puchkov, E. M. Shirokova, V. I. Gomzyak, K. T. Kalinin, A. I. Kulebyakina, and S. N. Chvalun, “Nanoformulations of drugs based on biodegradable lactide copolymers with various molecular structures and architectures,” Nanobiotechnol. Rep. 16 (4), 421–438 (2021). https://doi.org/10.1134/S2635167621040121

    Article  Google Scholar 

  4. N. B. Svishcheva, S. A. Uspenskii, N. G. Sedush, P. A. Khaptakhanova, A. I. Kasatova, A. I. Buzin, P. V. Dmitryakov, M. S. Piskarev, A. I. Aleksandrov, and S. Y. Taskaev, “Biodegradable boron-containing poly(lactic acid) for fertilizers with prolonged action,” Mater. Today Commun. 33, 104514 (2022). https://doi.org/10.1016/j.mtcomm.2022.104514

    Article  Google Scholar 

  5. G. Kister, G. Cassanas, and M. Vert, “Effects of morphology, conformation and configuration on the IR and Raman spectra of various poly(lactic acid)s,” Polymer 39 (2), 267–273 (1998). https://doi.org/10.1016/S0032-3861(97)00229-2

    Article  Google Scholar 

  6. D. Qin and R. T. Kean, “Crystallinity determination of polylactide by FT-Raman spectrometry,” Appl. Spectrosc. 52 (4), 488–495 (1998). https://doi.org/10.1366/0003702981943950

    Article  ADS  Google Scholar 

  7. M. S. Park, Y. S. Wong, J. O. Park, S. S. Venkatraman, and M. Srinivasarao, “A simple method for obtaining the information of orientation distribution using polarized Raman spectroscopy: Orientation study of structural units in poly(lactic acid),” Macromolecules 44 (7), 2120–2131 (2011). https://doi.org/10.1021/ma101553v

    Article  ADS  Google Scholar 

  8. G. Kister, G. Cassanas, and M. Vert, “Structure and morphology of solid lactide-glycolide copolymers from 13C n.m.r., infra-red and Raman spectroscopy,” Polymer 39 (15), 3335–3340 (1998). https://doi.org/10.1016/S0032-3861(97)10057-X

    Article  Google Scholar 

  9. G. Cassanas, G. Kister, E. Fabrègue, M. Morssli, and L. Bardet, “Raman spectra of glycolic acid, L-lactic acid and D,L-lactic acid oligomers,” Spectrochim. Acta, Part A 49 (2), 271–279 (1993). https://doi.org/10.1016/0584-8539(93)80181-9

    Article  ADS  Google Scholar 

  10. S. Jarmelo, D. A. S. Marques, P. N. Simões, R. A. Carvalho, C. M. S. G. Batista, C. Araujo-Andrade, M. H. Gil, and R. Fausto, “Experimental (IR/Raman and 1H/13C NMR) and theoretical (DFT) studies of the preferential conformations adopted by L-lactic acid oligomers and poly(L-lactic acid) homopolymer,” J. Phys. Chem. B 116 (1), 9–21 (2012). https://doi.org/10.1021/jp205033c

    Article  Google Scholar 

  11. P. B. Smith, A. Leugers, S. Kang, X. Yang, and S. L. Hsu, “Raman characterization of orientation in poly(lactic acid) films,” Macromol. Symp. 175 (1), 81–94 (2001). https://doi.org/10.1002/1521-3900(200110)175:1<81::AID-MASY81>3.0.CO;2-1

    Article  Google Scholar 

  12. M. Tanaka and R. J. Young, “Molecular orientation distributions in uniaxially oriented poly(L-lactic acid) films determined by polarized Raman spectroscopy,” Macromolecules 39 (9), 3312–3321 (2006). https://doi.org/10.1021/ma0526286

    Article  ADS  Google Scholar 

  13. S. O. Liubimovskii, V. S. Novikov, E. A. Sagitova, S.M. Kuznetsov, A. V. Bakirov, P. V. Dmitryakov, N. G. Sedush, S. N. Chvalun, L. Yu. Ustynyuk, V. V. Kuzmin, D. D. Vasimov, M. N. Moskovskiy, and G. Yu. Nikolaeva, “Raman evaluation of the crystallinity degree and composition of poly(L-lactide-co-ε-caprolactone),” Spectrochim. Acta, Part A (2023) (in press).

  14. G. Kister, G. Cassanas, M. Bergounhon, D. Hoarau, and M. Vert, Structural characterization and hydrolytic degradation of solid copolymers of D,L-lactide-co-ε-caprolactone by Raman spectroscopy,” Polymer 41 (3), 925–932 (2000). https://doi.org/10.1016/S0032-3861(99)00223-2

    Article  Google Scholar 

  15. S. Park, J. O. Baker, M. E. Himmel, P. A. Parilla, and D. K. Johnson, “Cellulose crystallinity index: Measurement techniques and their impact on interpreting cellulase performance,” Biotechnol. Biofuels 3, 10 (2010). https://doi.org/10.1186/1754-6834-3-10

    Article  Google Scholar 

  16. S. Sasaki and T. Asakura, “Helix distortion and crystal structure of the α-form of poly(L-lactide),” Macromolecules 36 (22), 8385–8390 (2003). https://doi.org/10.1021/ma0348674

    Article  ADS  Google Scholar 

  17. S. M. Kuznetsov, V. S. Novikov, E. A. Sagitova, L. Yu. Ustynyuk, A. A. Glikin, K. A. Prokhorov, G. Yu. Nikolaeva, and P. P. Pashinin, “Raman spectra of n-pentane, n-hexane, and n-octadecane: Experimental and density functional theory (DFT) study,” Laser Phys. 29, 085701 (2019). https://doi.org/10.1088/1555-6611/ab2908

    Article  ADS  Google Scholar 

  18. D. N. Laikov and Yu. A. Ustynyuk, “PRIRODA-04: A quantum-chemical program suite. New possibilities in the study of molecular systems with the application of parallel computing,” Russ. Chem. Bull. 54 (3), 820–826 (2005). https://doi.org/10.1007/s11172-005-0329-x

    Article  Google Scholar 

  19. J. Baker and P. Pulay, “Assessment of the Handy–Cohen optimized exchange density functional for organic reactions,” J. Chem. Phys. 117 (4), 1441–1449 (2002). https://doi.org/10.1063/1.1485723

    Article  ADS  Google Scholar 

  20. S. O. Liubimovskii, V. S. Novikov, L. Yu. Ustynyuk, P. V. Ivchenko, K. A. Prokhorov, V. V. Kuzmin, E. A. Sagitova, M. M. Godyaeva, S. V. Gudkov, M. E. Darvin, and G. Yu. Nikolaeva, “Raman structural study of ethylene glycol and 1,3-propylene glycol aqueous solutions,” Spectrochim. Acta, Part A 285, 121927 (2023). https://doi.org/10.1016/j.saa.2022.121927

    Article  Google Scholar 

  21. V. V. Kuzmin, V. S. Novikov, E. A. Sagitova, L. Yu. Ustynyuk, K. A. Prokhorov, P. V. Ivchenko, and G. Yu. Nikolaeva, “Correlations among the Raman spectra and the conformational compositions of ethylene glycol, 1,2- and 1,3-propylene glycols,” J. Mol. Struct. 1243, 130847 (2021). https://doi.org/10.1016/j.molstruc.2021.130847

    Article  Google Scholar 

  22. V. S. Novikov, V. V. Kuzmin, S. M. Kuznetsov, M. E. Darvin, J. Lademann, E. A. Sagitova, L. Yu. Ustynyuk, K. A. Prokhorov, and G. Yu. Nikolaeva, “DFT study of Raman spectra of polyenes and ß-carotene: Dependence on length of polyene chain and isomer type,” Spectrochim. Acta, Part A 255, 119668 (2021). https://doi.org/10.1016/j.saa.2021.119668

    Article  Google Scholar 

  23. V. V. Kuzmin, V. S. Novikov, L. Yu. Ustynyuk, K. A. Prokhorov, E. A. Sagitova, and G. Yu. Nikolaeva, “Raman spectra of polyethylene glycols: Comparative experimental and DFT study,” J. Mol. Struct. 1217, 128331 (2020). https://doi.org/10.1016/j.molstruc.2020.128331

    Article  Google Scholar 

  24. Chemcraft—Freeware Lite Version (2022). https://www.chemcraftprog.com/lite.html

Download references

ACKNOWLEDGMENTS

We are grateful to the Joint Supercomputer Center of the RAS for the possibility of using their computational resources for our calculations.

DSC investigation was performed using equipment of NRC “Kurchatov Institute”—Shared Knowledge Center.

Funding

This study was supported by the Russian Science Foundation under the grant no. 23-22-00347, https://rscf.ru/en/project/23-22-00347/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Liubimovskii.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The text was submitted by the authors in English.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liubimovskii, S.O., Novikov, V.S., Vasimov, D.D. et al. Raman Evaluation of the Crystallinity Degree of Poly(L-Lactide)-Based Materials. Phys. Wave Phen. 32, 140–149 (2024). https://doi.org/10.3103/S1541308X24700080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X24700080

Keywords:

Navigation