Skip to main content
Log in

Behaviour of Transverse Wave at an Imperfectly Corrugated Interface of a Functionally Graded Structure

  • METHODS OF WAVE SCATTERING IN INHOMOGENEOUS MEDIA
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

An investigation of the transverse wave has been carried out in a structure of functionally graded material. The structure consists of layer and a semi-infinite medium. The layer is composed of a functionally graded magneto-electro-elastic material with a quadratic gradedness parameter. The semi-infinite medium is composed of functionally graded piezoelectric with a quadratic gradedness parameter. The interface between the layer and half-space is taken as loosely bonded and corrugated, whereas the upper boundary is assumed to be stress-free and corrugated. Moreover, the solutions for layer and half-space are obtained using the basic variable-separable method to reduce the partial differential equation to the ordinary differential equation. And ordinary differential equation solutions are obtained by using the WKB approximation technique. The solutions with boundary conditions lead to dispersion relations in the determinant form of two cases: electrically open and short. To know the impact of the parameter involved, a particular model consists of BaTiO3–CoFe2O4 magneto-electro-elastic material layer and BaTiO3 piezoelectric semi-infinite medium have been taken. Graphs of phase velocity versus wave number are plotted, which interpret the numerical outcomes physically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. B. Jakoby and M. J. Vellekoop, “Properties of Love waves: Applications in sensors,” Smart Mater. Struct. 6 (6), 668–679 (1997). https://doi.org/10.1088/0964-1726/6/6/003

    Article  ADS  Google Scholar 

  2. F. L. Guo and R. Sun, “Propagation of Bleustein–Gulyaev wave in 6 mm piezoelectric materials loaded with viscous liquid,” Int. J. Solids Struct. 45 (13), 3699–3710 (2008). https://doi.org/10.1016/j.ijsolstr.2007.09.018

    Article  Google Scholar 

  3. T.-T. Wu and T. Y. Wu, “Surface waves in coated anisotropic medium loaded with viscous liquid,” J. Appl. Mech. 67 (2), 262–266 (2000). https://doi.org/10.1115/1.1304840

    Article  ADS  Google Scholar 

  4. X. Cao, F. Jin, I. Jeon, and T. J. Lu, “Propagation of Love waves in a functionally graded piezoelectric material (FGPM) layered composite system,” Int. J. Solids Struct. 46 (22–23), 4123–4132 (2009). https://doi.org/10.1016/j.ijsolstr.2009.08.005

  5. H. Liu, J.-L. Yang, and K.-X. Liu, “Love waves in layered graded composite structures with imperfectly bonded interface,” Chin. J. Aeronaut. 20 (3), 210–214 (2007). https://doi.org/10.1016/S1000-9361(07)60034-X

    Article  Google Scholar 

  6. F. Jin, Z. Qian, Z. Wang, and K. Kishimoto, “Propagation behavior of Love waves in a piezoelectric layered structure with inhomogeneous initial stress,” Smart Mater. Struct. 14 (4), 515–523 (2005). https://doi.org/10.1088/0964-1726/14/4/009

    Article  ADS  Google Scholar 

  7. S. Chaudhary, S. A. Sahu, and A. Singhal, “Analytic model for Rayleigh wave propagation in piezoelectric layer overlaid orthotropic substratum,” Acta Mech. 228 (2), 495–529 (2017). https://doi.org/10.1007/s00707-016-1708-0

    Article  MathSciNet  Google Scholar 

  8. K. Hemalatha, S. Kumar, and D. Prakash, “Dispersion of Rayleigh wave in a functionally graded piezoelectric layer over elastic substrate,” Forces Mech. 10, 100171 (2023). https://doi.org/10.1016/j.finmec.2023.100171

    Article  Google Scholar 

  9. X. Y. Li, Z. K. Wang, and S. H. Huang, “Love waves in functionally graded piezoelectric materials,” Int. J. Solids Struct. 41 (26), 7309–7328 (2004). https://doi.org/10.1016/j.ijsolstr.2004.05.064

    Article  Google Scholar 

  10. L. Li and P. J. Wei, “The piezoelectric and piezomagnetic effect on the surface wave velocity of magneto-electro-elastic solids,” J. Sound Vib. 333 (8), 2312–2326 (2014). https://doi.org/10.1016/j.jsv.2013.12.005

    Article  ADS  Google Scholar 

  11. J. Chen, E. Pan, and H. Chen, “Wave propagation in magneto-electro-elastic multilayered plates,” Int. J. Solids Struct. 44 (3–4), 1073–1085 (2007). https://doi.org/10.1016/j.ijsolstr.2006.06.003

  12. J. Chen, J. Guo, and E. Pan, “Wave propagation in magneto-electro-elastic multilayered plates with nonlocal effect,” J. Sound Vib. 400, 550–563 (2017). https://doi.org/10.1016/j.jsv.2017.04.001

    Article  ADS  Google Scholar 

  13. A. Melkumyan, “Twelve shear surface waves guided by clamped/free boundaries in magneto-electro-elastic materials,” Int. J. Solids Struct. 44 (10), 3594–3599 (2007). https://doi.org/10.1016/j.ijsolstr.2006.09.016

    Article  Google Scholar 

  14. E. Pan and F. Han, “Exact solution for functionally graded and layered magneto-electro-elastic plates,” Int. J. Eng. Sci. 43 (3–4), 321–339 (2005). https://doi.org/10.1016/j.ijengsci.2004.09.006

  15. L. Li and P. J. Wei, “Surface wave speed of functionally graded magneto-electro-elastic materials with initial stresses,” J. Theor. Appl. Mech. 44 (3), 49–64 (2014). https://doi.org/10.2478/jtam-2014-0016

    Article  ADS  MathSciNet  Google Scholar 

  16. X. Cao, J. Shi, and F. Jin, “Lamb wave propagation in the functionally graded piezoelectric–piezomagnetic material plate,” Acta Mech. 223 (5), 1081–1091 (2012). https://doi.org/10.1007/s00707-012-0612-5

    Article  MathSciNet  Google Scholar 

  17. A. K. Singh, A. Das, S. Kumar, and A. Chattopadhyay, “Influence of corrugated boundary surfaces, reinforcement, hydrostatic stress, heterogeneity and anisotropy on Love-type wave propagation,” Meccanica 50 (12), 2977–2994 (2015). https://doi.org/10.1007/s11012-015-0172-6

    Article  MathSciNet  Google Scholar 

  18. S. S. Singh and S. K. Tomar, “qP-wave at a corrugated interface between two dissimilar pre-stressed elastic half-spaces,” J. Sound Vib. 317 (3–5), 687–708 (2008). https://doi.org/10.1016/j.jsv.2008.03.036

  19. J. Kaur, S. K. Tomar, and V. P. Kaushik, “Reflection and refraction of SH-waves at a corrugated interface between two laterally and vertically heterogeneous viscoelastic solid half-spaces,” Int. J. Solids Struct. 42 (13), 3621–3643 (2005). https://doi.org/10.1016/j.ijsolstr.2004.11.014

    Article  Google Scholar 

  20. S. K. Tomar and J. Kaur, “Reflection and transmission of SH-waves at a corrugated interface between two laterally and vertically heterogeneous anisotropic elastic solid half-spaces,” Earth, Planets Space 55 (9), 531–547 (2003). https://doi.org/10.1186/BF03351786

    Article  ADS  Google Scholar 

  21. S. K. Tomar and J. Kaur, “SH-waves at a corrugated interface between a dry sandy halfspace and an anisotropic elastic half-space,” Acta Mech. 190 (1), 1–28 (2007). https://doi.org/10.1007/s00707-006-0423-7

    Article  Google Scholar 

  22. J. Kaur and S. K. Tomar, “Reflection and refraction of SH-waves at a corrugated interface between two monoclinic elastic half-spaces,” Int. J. Numer. Anal. Methods Geomech. 28 (15), 1543–1575 (2004). https://doi.org/10.1002/nag.399

    Article  Google Scholar 

  23. A. K. Singh, A. Das, and A. Ray, “Rayleigh-type wave propagation through liquid layer over corrugated substrate,” Appl. Math. Mech. 38 (6), 851–866 (2017). https://doi.org/10.1007/s10483-017-2205-8

    Article  MathSciNet  Google Scholar 

  24. K. Hemalatha, S. Kumar, and A. Akshaya, “Rayleigh wave at imperfectly corrugated interface in FGPM structure,” Coupled Syst. Mech. 12 (4), 337–364 (2023). https://doi.org/10.12989/csm.2023.12.4.33710.12989/csm.2023.12.4.337

    Article  Google Scholar 

  25. S. Kumar, P. C. Pal, and S. Majhi, “Reflection and transmission of SH-waves at a corrugated interface between two semi-infinite anisotropic magnetoelastic half-spaces,” Waves Random Complex Media 27 (2), 339–358 (2023). https://doi.org/10.1080/17455030.2016.1245454

    Article  ADS  MathSciNet  Google Scholar 

  26. N. Fröman and P. O. Fröman, Physical Problems Solved by the Phase-Integral Method (Cambridge Univ. Press, Cambridge, 2002). https://doi.org/10.1017/CBO9780511535086

  27. J. Liu and Z. K. Wang, “The propagation behavior of Love waves in a functionally graded layered piezoelectric structure,” Smart Mater. Struct. 14 (1), 137–146 (2005). https://doi.org/10.1088/0964-1726/14/1/013

    Article  ADS  Google Scholar 

  28. J. Du, X. Jin, J. Wang, and K. Xian, “Love wave propagation in functionally graded piezoelectric material layer,” Ultrasonics 46 (1), 13–22 (2007). https://doi.org/10.1016/j.ultras.2006.09.004

    Article  Google Scholar 

  29. S. A. Sahu, J. Baroi, A. Chattopadhyay, and S. Nirwal, “Characterization of polarized shear waves in FGPM composite structure with imperfect boundary: WKB method,” Int. J. Appl. Mech. 11 (9), 1950083 (2019). https://doi.org/10.1142/S1758825119500832

    Article  Google Scholar 

  30. Z. H. Qian, F. Jin, K. Kishimoto, and T. Lu, “Propagation behavior of Love waves in a functionally graded half-space with initial stress,” Int. J. Solids Struct. 46 (6), 1354–1361 (2009). https://doi.org/10.1016/j.ijsolstr.2008.11.003

    Article  Google Scholar 

  31. P. Kumar, M. Mahanty, A. Chattopadhyay, and A. K. Singh,” Effect of interfacial imperfection on shear wave propagation in a piezoelectric composite structure: Wentzel–Kramers–Brillouin asymptotic approach,” J. Intell. Mater. Syst. Struct. 30 (18–19), 2789–2807 (2019). https://doi.org/10.1177/1045389X19873413

  32. S. A. Sahu, M. K. Singh, and K. K. Pankaj, “Analysis of torsional waves in a prestressed composite structure with loosely bonded and corrugated boundaries,” Mech. Compos. Mater. 54 (3), 321–332 (2018). https://doi.org/10.1007/s11029-018-9742-8

    Article  ADS  Google Scholar 

  33. A. K. Singh, K. C. Mistri, T. Kaur, and S. Sharma, “Propagation of shear wave at a loosely bonded corrugated interface between a fibre-reinforced layer and an isotropic half-space,” AIP Conf. Proc. 1802 (1), 020016 (2017). https://doi.org/10.1063/1.4973266

    Article  Google Scholar 

  34. J. Baroi and S. A. Sahu, “Love-type wave propagation in functionally graded piezomagnetic material resting on piezoelectric half-space,” in Advances in Structural Vibration, Ed. by S. Dutta, E. Inan, and S. K. Dwivedy (Springer, Singapore, 2021), pp. 495–508. https://doi.org/10.1007/978-981-15-5862-7_40

  35. S. Majhi, P. C. Pal, and S. Kumar, “Love waves in a layered functionally graded piezoelectric structure under initial stress,” Waves Random Complex Media 26 (4), 535–552 (2016). https://doi.org/10.1080/17455030.2016.1171930

    Article  ADS  MathSciNet  Google Scholar 

  36. R. Kumar and M. Singh, “Reflection/transmission of plane waves at an imperfectly bonded interface of two orthotropic generalized thermoelastic half-spaces,” Mater. Sci. Eng., A 472 (1–2), 83–96 (2008). https://doi.org/10.1016/j.msea.2007.03.015

  37. S. S. Singh, “Love wave at a layer medium bounded by irregular boundary surfaces,” J. Vib. Control 17 (5), 789–795 (2011). https://doi.org/10.1177/1077546309351301

    Article  MathSciNet  Google Scholar 

  38. S. S. Singh, “Response of shear wave from a corrugated interface between elastic solid/viscoelastic half-spaces,” Int. J. Numer. Anal. Methods Geomech. 35 (5), 529–543 (2011). https://doi.org/10.1002/nag.901

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

One of the authors gratefully acknowledges to SRMIST, Kattankulathur, India for facilitating with best research facility and providing research fellowship to carryout our research. The authors are also thankful to the Editors and reviewers for their valuable comments and suggestions to improve the quality of the paper.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kumar.

Ethics declarations

The authors declare no potential conflicts of interests with respect to the research, authorship and/or publication of this article.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The text was submitted by the authors in English.

Appendices

APPENDIX A

$${{s}_{1}} = 1 + {{\delta }_{1}}{{\xi }_{2}},~\,\,\,{{s}_{2}} = 1 + {{\delta }_{1}}\left( {h + {{\xi }_{1}}} \right),\,\,\,~{{s}_{3}} = 1 + {{\delta }_{2}}{{\xi }_{1}},$$
$${{v}_{1}} = k\sqrt {\frac{{\rho _{1}^{0}{{c}^{2}}}}{{{{M}^{0}}}} - 1} + \frac{{\delta _{1}^{2}}}{{2ks_{1}^{2}}}\sqrt {\frac{{{{M}^{0}}}}{{\rho _{1}^{0}{{c}^{2}} - {{M}^{0}}}}} ,$$
$${{v}_{2}} = k - \frac{{\delta _{1}^{2}}}{{2ks_{1}^{2}}},$$
$${{v}_{3}} = k\sqrt {\frac{{\rho _{1}^{0}{{c}^{2}}}}{{{{M}^{0}}}} - 1} + \frac{{\delta _{1}^{2}}}{{2ks_{2}^{2}}}\sqrt {\frac{{{{M}^{0}}}}{{\rho _{1}^{0}{{c}^{2}} - {{M}^{0}}}}} ,$$
$${{v}_{4}} = k - \frac{{\delta _{1}^{2}}}{{2ks_{2}^{2}}},$$
$${{v}_{5}} = k\sqrt {\frac{{\rho _{2}^{1}{{c}^{2}}}}{{{{M}^{1}}}} - 1} + \frac{{\delta _{2}^{2}}}{{2ks_{3}^{2}}}\sqrt {\frac{{{{M}^{1}}}}{{\rho _{2}^{1}{{c}^{2}} - {{M}^{1}}}}} ,$$
$${{v}_{6}} = k - \frac{{\delta _{2}^{2}}}{{2ks_{3}^{2}}},$$
$${{p}_{1}} = - k\left( {h + {{\xi }_{2}}} \right)\sqrt {\frac{{\rho _{1}^{0}{{c}^{2}}}}{{{{M}^{0}}}} - 1} - \frac{{{{\delta }_{1}}}}{{2k{{s}_{1}}}}\sqrt {\frac{{{{M}^{0}}}}{{\rho _{1}^{0}{{c}^{2}} - {{M}^{0}}}}} ,$$
$${{p}_{2}} = - k\left( {h + {{\xi }_{2}}} \right) + \frac{{{{\delta }_{1}}}}{{2k{{s}_{1}}}},$$
$${{p}_{3}} = k\left( { - h + {{\xi }_{2}}} \right),$$
$${{p}_{4}} = k{{\xi }_{1}}\sqrt {\frac{{\rho _{1}^{0}{{c}^{2}}}}{{{{M}^{0}}}} - 1} - \frac{{{{\delta }_{1}}}}{{2k{{s}_{2}}}}\sqrt {\frac{{{{M}^{0}}}}{{\rho _{1}^{0}{{c}^{2}} - {{M}^{0}}}}} ,$$
$${{p}_{5}} = k{{\xi }_{1}} + \frac{{{{\delta }_{1}}}}{{2k{{s}_{2}}}},$$
$${{p}_{6}} = k{{\xi }_{1}}\sqrt {\frac{{\rho _{2}^{1}{{c}^{2}}}}{{{{M}^{1}}}} - 1} - \frac{{{{\delta }_{2}}}}{{2k{{s}_{3}}}}\sqrt {\frac{{{{M}^{1}}}}{{\rho _{2}^{1}{{c}^{2}} - {{M}^{1}}}}} ,$$
$${{p}_{7}} = k{{\xi }_{1}} + \frac{{{{\delta }_{2}}}}{{2k{{s}_{3}}}},$$
$${{A}_{0}} = e_{{15}}^{0} - \kappa _{{11}}^{0}{{m}_{2}} - \beta _{{11}}^{0}{{m}_{3}},$$
$${{A}_{1}} = h_{{15}}^{0} - \beta _{{11}}^{0}{{m}_{2}} - \mu _{{11}}^{0}{{m}_{3}}.$$

APPENDIX B

$${{r}_{{11}}} = {{M}^{0}}s_{1}^{2}\left( {\frac{{ - {{\delta }_{1}}}}{{2\sqrt {{{s}_{1}}} }} + i\sqrt {{{s}_{1}}} \left( {{{v}_{1}} - k\xi _{2}^{'}} \right)} \right){{e}^{{i{{p}_{1}}}}},$$
$${{r}_{{12}}} = - {{M}^{0}}s_{1}^{2}\left( {\frac{{{{\delta }_{1}}}}{{2\sqrt {{{s}_{1}}} }} + i\sqrt {{{s}_{1}}} \left( {{{v}_{1}} + k\xi _{2}^{'}} \right)} \right){{e}^{{ - i{{p}_{1}}}}},$$
$${{r}_{{13}}} = e_{{15}}^{0}s_{1}^{2}\left( {\frac{{ - {{\delta }_{1}}}}{{2\sqrt {{{s}_{1}}} }} + \sqrt {{{s}_{1}}} \left( {{{v}_{2}} - k\xi _{2}^{'}} \right)} \right){{e}^{{{{p}_{2}}}}},$$
$${{r}_{{14}}} = - e_{{15}}^{0}s_{1}^{2}\left( {\frac{{{{\delta }_{1}}}}{{2\sqrt {{{s}_{1}}} }} + \sqrt {{{s}_{1}}} \left( {{{v}_{2}} + k\xi _{2}^{'}} \right)} \right){{e}^{{ - {{p}_{2}}}}},$$
$${{r}_{{15}}} = h_{{15}}^{0}s_{1}^{2}\left( {\frac{{ - {{\delta }_{1}}}}{{2\sqrt {{{s}_{1}}} }} + \sqrt {{{s}_{1}}} \left( {{{v}_{2}} - k\xi _{2}^{'}} \right)} \right){{e}^{{{{p}_{2}}}}},$$
$${{r}_{{16}}} = ~ - h_{{15}}^{0}s_{1}^{2}\left( {\frac{{{{\delta }_{1}}}}{{2\sqrt {{{s}_{1}}} }} + \sqrt {{{s}_{1}}} \left( {{{v}_{2}} + k\xi _{2}^{'}} \right)} \right){{e}^{{ - {{p}_{2}}}}},$$
$${{r}_{{17}}} = {{r}_{{18}}} = {{r}_{{19}}} = {{r}_{{110}}} = {{r}_{{111}}} = 0;$$
$${{r}_{{21}}} = \frac{{{{m}_{2}}}}{{\sqrt {{{s}_{1}}} }}{{e}^{{i{{p}_{1}}}}},~\,\,\,\,~{{r}_{{22}}} = \frac{{{{m}_{2}}}}{{\sqrt {{{s}_{1}}} }}{{e}^{{ - i{{p}_{1}}}}},$$
$${{r}_{{23}}} = \frac{1}{{\sqrt {{{s}_{1}}} }}{{e}^{{{{p}_{2}}}}},\,\,\,~~{{r}_{{24}}} = \frac{1}{{\sqrt {{{s}_{1}}} }}{{e}^{{ - {{p}_{2}}}}},$$
$${{r}_{{25}}} = {{r}_{{26}}} = {{r}_{{27}}} = {{r}_{{28}}} = {{r}_{{29}}} = 0,$$
$${{r}_{{210}}} = ~ - {{e}^{{{{p}_{3}}}}},\,\,\,\,~~{{r}_{{211}}} = 0;$$
$${{r}_{{31}}} = {{A}_{0}}s_{1}^{2}\left( {\frac{{ - {{\delta }_{1}}}}{{2\sqrt {{{s}_{1}}} }} + i\sqrt {{{s}_{1}}} {{v}_{1}}} \right){{e}^{{i{{p}_{1}}}}},$$
$${{r}_{{32}}} = - {{A}_{0}}s_{1}^{2}\left( {\frac{{{{\delta }_{1}}}}{{2\sqrt {{{s}_{1}}} }} + i\sqrt {{{s}_{1}}} {{v}_{1}}} \right){{e}^{{ - i{{p}_{1}}}}},$$
$${{r}_{{33}}} = - \kappa _{{11}}^{0}s_{1}^{2}\left( {\frac{{ - {{\delta }_{1}}}}{{2\sqrt {{{s}_{1}}} }} + \sqrt {{{s}_{1}}} {{v}_{2}}} \right){{e}^{{{{p}_{2}}}}},$$
$${{r}_{{34}}} = \kappa _{{11}}^{0}s_{1}^{2}\left( {\frac{{{{\delta }_{1}}}}{{2\sqrt {{{s}_{1}}} }} + \sqrt {{{s}_{1}}} {{v}_{2}}} \right){{e}^{{ - {{p}_{2}}}}},$$
$${{r}_{{35}}} = - \beta _{{11}}^{0}s_{1}^{2}\left( {\frac{{ - {{\delta }_{1}}}}{{2\sqrt {{{s}_{1}}} }} + \sqrt {{{s}_{1}}} {{v}_{2}}} \right){{e}^{{{{p}_{2}}}}},$$
$${{r}_{{36}}} = ~\,\,\beta _{{11}}^{0}s_{1}^{2}\left( {\frac{{{{\delta }_{1}}}}{{2\sqrt {{{s}_{1}}} }} + \sqrt {{{s}_{1}}} {{v}_{2}}} \right){{e}^{{ - {{p}_{2}}}}},$$
$${{r}_{{37}}} = {{r}_{{38}}} = {{r}_{{39}}} = 0,~\,\,\,\,~{{r}_{{310}}} = ~\,\,\,{{\kappa }_{0}}k{{s}_{1}}{{e}^{{{{p}_{3}}}}},\,\,\,~~{{r}_{{311}}} = 0;$$
$$~{{r}_{{41}}} = \frac{{{{m}_{3}}}}{{\sqrt {{{s}_{1}}} }}{{e}^{{i{{p}_{1}}}}},~\,\,\,\,~{{r}_{{42}}} = \frac{{{{m}_{3}}}}{{\sqrt {{{s}_{1}}} }}{{e}^{{ - i{{p}_{1}}}}},$$
$${{r}_{{43}}} = {{r}_{{44}}} = 0,$$
$${{r}_{{45}}} = \frac{1}{{\sqrt {{{s}_{1}}} }}{{e}^{{{{p}_{2}}}}},\,\,\,\,~~{{r}_{{46}}} = \frac{1}{{\sqrt {{{s}_{1}}} }}{{e}^{{ - {{p}_{2}}}}},$$
$${{r}_{{47}}} = {{r}_{{48}}} = {{r}_{{49}}} = {{r}_{{410}}} = \,\,~0,~\,\,\,\,~{{r}_{{411}}} = - {{e}^{{{{p}_{3}}}}};$$
$${{r}_{{51}}} = {{A}_{1}}s_{1}^{2}\left( {\frac{{ - {{\delta }_{1}}}}{{2\sqrt {{{s}_{1}}} }} + i\sqrt {{{s}_{1}}} v} \right){{e}^{{i{{p}_{1}}}}},$$
$${{r}_{{52}}} = - {{A}_{1}}s_{1}^{2}\left( {\frac{{{{\delta }_{1}}}}{{2\sqrt {{{s}_{1}}} }} + i\sqrt {{{s}_{1}}} {{v}_{1}}} \right){{e}^{{ - i{{p}_{1}}}}},$$
$${{r}_{{53}}} = \beta _{{11}}^{0}s_{1}^{2}\left( {\frac{{ - {{\delta }_{1}}}}{{2\sqrt {{{s}_{1}}} }} + \sqrt {{{s}_{1}}} {{v}_{2}}} \right){{e}^{{{{p}_{2}}}}},$$
$${{r}_{{54}}} = - \beta _{{11}}^{0}s_{1}^{2}\left( {\frac{{{{\delta }_{1}}}}{{2\sqrt {{{s}_{1}}} }} + \sqrt {{{s}_{1}}} {{v}_{2}}} \right){{e}^{{ - {{p}_{2}}}}},$$
$${{r}_{{55}}} = - \mu _{{11}}^{0}s_{1}^{2}\left( {\frac{{ - {{\delta }_{1}}}}{{2\sqrt {{{s}_{1}}} }} + \sqrt {{{s}_{1}}} {{v}_{2}}} \right){{e}^{{{{p}_{2}}}}},$$
$${{r}_{{56}}} = ~\,\,\mu _{{11}}^{0}s_{1}^{2}\left( {\frac{{{{\delta }_{1}}}}{{2\sqrt {{{s}_{1}}} }} + \sqrt {{{s}_{1}}} {{v}_{2}}} \right){{e}^{{ - {{p}_{2}}}}},$$
$${{r}_{{57}}} = {{r}_{{58}}} = {{r}_{{59}}} = 0,\,\,\,~~{{r}_{{510}}} = 0,\,\,\,\,~~{{r}_{{511}}} = {{\mu }_{0}}k{{s}_{1}}{{e}^{{{{p}_{3}}}}};$$
$${{r}_{{61}}} = {{M}^{0}}s_{2}^{2}{{s}_{3}}\left( {\frac{{ - {{\delta }_{1}}}}{{2\sqrt {{{s}_{2}}} }} + i\sqrt {{{s}_{2}}} \left( {{{v}_{3}} - k\xi _{1}^{'}} \right)} \right){{e}^{{i{{p}_{4}}}}},$$
$${{r}_{{62}}} = - {{M}^{0}}s_{2}^{2}{{s}_{3}}\left( {\frac{{{{\delta }_{1}}}}{{2\sqrt {{{s}_{2}}} }} + i\sqrt {{{s}_{2}}} \left( {{{v}_{3}} + k\xi _{1}^{'}} \right)} \right){{e}^{{ - i{{p}_{4}}}}},$$
$${{r}_{{63}}} = e_{{15}}^{0}s_{2}^{2}{{s}_{3}}\left( {\frac{{ - {{\delta }_{1}}}}{{2\sqrt {{{s}_{2}}} }} + \sqrt {{{s}_{2}}} \left( {{{v}_{4}} - k\xi _{1}^{'}} \right)} \right){{e}^{{{{p}_{5}}}}},$$
$${{r}_{{64}}} = - e_{{15}}^{0}s_{2}^{2}{{s}_{3}}\left( {\frac{{{{\delta }_{1}}}}{{2\sqrt {{{s}_{2}}} }} + \sqrt {{{s}_{2}}} \left( {{{v}_{4}} + k\xi _{1}^{'}} \right)} \right){{e}^{{ - {{p}_{5}}}}},$$
$${{r}_{{65}}} = h_{{15}}^{0}s_{2}^{2}{{s}_{3}}\left( {\frac{{ - {{\delta }_{1}}}}{{2\sqrt {{{s}_{2}}} }} + \sqrt {{{s}_{2}}} \left( {{{v}_{4}} - k\xi _{1}^{'}} \right)} \right){{e}^{{{{p}_{5}}}}},$$
$${{r}_{{66}}} = \,\,~ - h_{{15}}^{0}s_{2}^{2}{{s}_{3}}\left( {\frac{{{{\delta }_{1}}}}{{2\sqrt {{{s}_{2}}} }} + \sqrt {{{s}_{2}}} \left( {{{v}_{4}} + k\xi _{1}^{'}} \right)} \right){{e}^{{ - {{p}_{5}}}}},$$
$${{r}_{{67}}} = - {{A}_{2}}{{s}_{2}}s_{3}^{2}\left( {\frac{{{{\delta }_{2}}}}{{2\sqrt {{{s}_{3}}} }} + i\sqrt {{{s}_{3}}} \left( {{{v}_{5}} + k\xi _{1}^{'}} \right)} \right){{e}^{{ - i{{p}_{6}}}}},$$
$${{r}_{{68}}} = - e_{{15}}^{1}{{s}_{2}}s_{3}^{2}\left( {\frac{{{{\delta }_{2}}}}{{2\sqrt {{{s}_{3}}} }} + \sqrt {{{s}_{3}}} \left( {{{v}_{6}} + k\xi _{1}^{'}} \right)} \right){{e}^{{ - {{p}_{7}}}}},$$
$${{r}_{{69}}} = {{r}_{{610}}} = {{r}_{{611}}} = 0;$$
$${{r}_{{71}}} = \frac{{ - K}}{{\sqrt {{{s}_{2}}} }}{{e}^{{i{{p}_{4}}}}},~\,\,\,~{{r}_{{72}}} = - \frac{K}{{\sqrt {{{s}_{2}}} }}{{e}^{{ - i{{p}_{4}}}}},$$
$${{r}_{{73}}} = {{r}_{{74}}} = {{r}_{{75}}} = {{r}_{{76}}} = 0,$$
$${{r}_{{77}}} = {{A}_{2}}s_{3}^{2}\left( {\frac{{{{\delta }_{2}}}}{{2\sqrt {{{s}_{3}}} }} + i\sqrt {{{s}_{3}}} \left( {{{v}_{5}} + k\xi _{1}^{'}} \right) + K} \right){{e}^{{ - i{{p}_{6}}}}},$$
$${{r}_{{78}}} = - e_{{15}}^{1}s_{3}^{2}\left( {\frac{{ - {{\delta }_{2}}}}{{2\sqrt {{{s}_{3}}} }} + \sqrt {{{s}_{3}}} \left( {{{v}_{6}} + k\xi _{1}^{'}} \right)} \right){{e}^{{ - {{p}_{7}}}}},$$
$${{r}_{{79}}} = {{r}_{{710}}} = \,\,~{{r}_{{711}}} = 0;$$
$${{r}_{{81}}} = \frac{{{{m}_{2}}}}{{\sqrt {{{s}_{2}}} }}{{e}^{{i{{p}_{4}}}}},\,\,\,\,~~{{r}_{{82}}} = \frac{{{{m}_{2}}}}{{\sqrt {{{s}_{2}}} }}{{e}^{{ - i{{p}_{4}}}}},$$
$${{r}_{{83}}} = \frac{1}{{\sqrt {{{s}_{2}}} }}{{e}^{{{{p}_{5}}}}},~\,\,\,\,~{{r}_{{84}}} = \frac{1}{{\sqrt {{{s}_{2}}} }}{{e}^{{ - {{p}_{5}}}}},$$
$${{r}_{{85}}} = {{r}_{{86}}} = 0,$$
$${{r}_{{87}}} = - \frac{{e_{{15}}^{1}}}{{\kappa _{{11}}^{1}}}\frac{1}{{\sqrt {{{s}_{3}}} }}{{e}^{{ - i{{p}_{6}}}}},$$
$${{r}_{{88}}} = - \frac{1}{{\sqrt {{{s}_{3}}} }}{{e}^{{ - {{p}_{7}}}}},$$
$${{r}_{{89}}} = {{r}_{{810}}} = \,\,~{{r}_{{811}}} = 0;$$
$${{r}_{{91}}} = \frac{{{{m}_{3}}}}{{\sqrt {{{s}_{2}}} }}{{e}^{{i{{p}_{4}}}}},~\,\,\,\,~{{r}_{{92}}} = \frac{{{{m}_{3}}}}{{\sqrt {{{s}_{2}}} }}{{e}^{{ - i{{p}_{4}}}}},$$
$${{r}_{{93}}} = {{r}_{{94}}} = 0,\,\,\,~~{{r}_{{95}}} = \frac{1}{{\sqrt {{{s}_{2}}} }}{{e}^{{{{p}_{5}}}}},$$
$${{r}_{{96}}} = \frac{1}{{\sqrt {{{s}_{2}}} }}{{e}^{{ - {{p}_{5}}}}},~\,\,\,\,~{{r}_{{97}}} = {{r}_{{98}}} = 0,$$
$${{r}_{{99}}} = - \frac{1}{{\sqrt {{{s}_{3}}} }}{{e}^{{ - {{p}_{7}}}}},~~{{r}_{{910}}} = ~{{r}_{{911}}} = 0;$$
$${{r}_{{1001}}} = {{A}_{0}}s_{2}^{2}{{s}_{3}}\left( {\frac{{ - {{\delta }_{1}}}}{{2\sqrt {{{s}_{2}}} }} + i\sqrt {{{s}_{2}}} {{v}_{3}}} \right){{e}^{{i{{p}_{4}}}}},~$$
$${{r}_{{1002}}} = - {{A}_{0}}s_{2}^{2}{{s}_{3}}\left( {\frac{{{{\delta }_{1}}}}{{2\sqrt {{{s}_{2}}} }} + i\sqrt {{{s}_{2}}} {{v}_{3}}} \right){{e}^{{ - i{{p}_{4}}}}},$$
$${{r}_{{1003}}} = - \kappa _{{11}}^{0}s_{2}^{2}{{s}_{3}}\left( {\frac{{ - {{\delta }_{1}}}}{{2\sqrt {{{s}_{2}}} }} + \sqrt {{{s}_{2}}} {{v}_{4}}} \right){{e}^{{{{p}_{5}}}}},$$
$${{r}_{{1004}}} = \kappa _{{11}}^{0}s_{2}^{2}{{s}_{3}}\left( {\frac{{{{\delta }_{1}}}}{{2\sqrt {{{s}_{2}}} }} + \sqrt {{{s}_{2}}} {{v}_{4}}} \right){{e}^{{ - {{p}_{5}}}}},$$
$${{r}_{{1005}}} = - \beta _{{11}}^{0}s_{2}^{2}{{s}_{3}}\left( {\frac{{ - {{\delta }_{1}}}}{{2\sqrt {{{s}_{2}}} }} + \sqrt {{{s}_{2}}} {{v}_{4}}} \right){{e}^{{{{p}_{5}}}}},$$
$${{r}_{{1006}}} = \,\,~\beta _{{11}}^{0}s_{2}^{2}{{s}_{3}}\left( {\frac{{{{\delta }_{1}}}}{{2\sqrt {{{s}_{2}}} }} + \sqrt {{{s}_{2}}} {{v}_{4}}} \right){{e}^{{ - {{p}_{5}}}}},$$
$${{r}_{{1007}}} = 0,$$
$${{r}_{{1008}}} = - \kappa _{{11}}^{1}{{s}_{2}}s_{3}^{2}\left( {\frac{{{{\delta }_{2}}}}{{2\sqrt {{{s}_{3}}} }} + \sqrt {{{s}_{3}}} {{v}_{6}}} \right){{e}^{{ - {{p}_{7}}}}},$$
$${{r}_{{1009}}} = {{r}_{{1010}}} = {{r}_{{1011}}} = 0;$$
$${{r}_{{1101}}} = {{A}_{1}}s_{2}^{2}{{s}_{3}}\left( {\frac{{ - {{\delta }_{1}}}}{{2\sqrt {{{s}_{2}}} }} + i\sqrt {{{s}_{2}}} {{v}_{3}}} \right){{e}^{{i{{p}_{4}}}}},$$
$${{r}_{{1102}}} = - {{A}_{1}}s_{2}^{2}{{s}_{3}}\left( {\frac{{{{\delta }_{1}}}}{{2\sqrt {{{s}_{2}}} }} + i\sqrt {{{s}_{2}}} {{v}_{3}}} \right){{e}^{{ - i{{p}_{4}}}}},$$
$${{r}_{{1103}}} = \beta _{{11}}^{0}s_{2}^{2}{{s}_{3}}\left( {\frac{{ - {{\delta }_{1}}}}{{2\sqrt {{{s}_{2}}} }} + \sqrt {{{s}_{2}}} {{v}_{4}}} \right){{e}^{{{{p}_{5}}}}},$$
$${{r}_{{1104}}} = - \beta _{{11}}^{0}s_{2}^{2}{{s}_{3}}\left( {\frac{{{{\delta }_{1}}}}{{2\sqrt {{{s}_{2}}} }} + \sqrt {{{s}_{2}}} {{v}_{4}}} \right){{e}^{{ - {{p}_{5}}}}},$$
$${{r}_{{1105}}} = - \mu _{{11}}^{0}s_{2}^{2}{{s}_{3}}\left( {\frac{{ - {{\delta }_{1}}}}{{2\sqrt {{{s}_{2}}} }} + \sqrt {{{s}_{2}}} {{v}_{4}}} \right){{e}^{{{{p}_{5}}}}},$$
$${{r}_{{1106}}} = \,\,~\mu _{{11}}^{0}s_{2}^{2}{{s}_{3}}\left( {\frac{{{{\delta }_{1}}}}{{2\sqrt {{{s}_{2}}} }} + \sqrt {{{s}_{2}}} {{v}_{4}}} \right){{e}^{{ - {{p}_{5}}}}},$$
$${{r}_{{1107}}} = {{r}_{{1108}}} = 0,$$
$${{r}_{{1109}}} = - \mu _{{11}}^{1}{{s}_{2}}s_{3}^{2}\left( {\frac{{{{\delta }_{2}}}}{{2\sqrt {{{s}_{3}}} }} + \sqrt {{{s}_{3}}} {{v}_{6}}} \right){{e}^{{ - {{p}_{7}}}}},$$
$${{r}_{{110}}} = {{r}_{{1111}}} = 0.$$

APPENDIX C

$${{r}_{{ij}}} = {{t}_{{mn}}},\,\,\,\,\forall i = 1,~6,~7,~8,~9,~10,~11;~\,\,\,~j = 1,~2,..,9;$$
$$m = 1,~4,~5,~6,~7,~8,~9;\,\,\,~~n = 1,~2,..,9$$
$${{t}_{{21}}} = \frac{{{{m}_{2}}}}{{\sqrt {{{s}_{2}}} }}{{e}^{{i{{p}_{4}}}}},\,\,\,~~{{t}_{{22}}} = \frac{{{{m}_{2}}}}{{\sqrt {{{s}_{2}}} }}{{e}^{{ - i{{p}_{4}}}}},$$
$${{t}_{{23}}} = \frac{1}{{\sqrt {{{s}_{2}}} }}{{e}^{{{{p}_{5}}}}},\,\,\,\,~{{t}_{{24}}} = \frac{1}{{\sqrt {{{s}_{2}}} }}{{e}^{{ - {{p}_{5}}}}},$$
$${{t}_{{25}}} = {{t}_{{26}}} = {{t}_{{27}}} = {{t}_{{28}}} = {{t}_{{29}}} = 0;$$
$${{t}_{{31}}} = \frac{{{{m}_{3}}}}{{\sqrt {{{s}_{2}}} }}{{e}^{{i{{p}_{4}}}}},~\,\,\,~{{t}_{{32}}} = \frac{{{{m}_{3}}}}{{\sqrt {{{s}_{2}}} }}{{e}^{{ - i{{p}_{4}}}}},$$
$${{t}_{{33}}} = {{t}_{{34}}} = 0,~\,\,\,~{{t}_{{35}}} = \frac{1}{{\sqrt {{{s}_{2}}} }}{{e}^{{{{p}_{5}}}}},$$
$${{t}_{{36}}} = \frac{1}{{\sqrt {{{s}_{2}}} }}{{e}^{{ - {{p}_{5}}}}},~\,\,\,\,~~{{t}_{{37}}} = {{t}_{{38}}} = {{t}_{{39}}} = 0.$$

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akshaya, A., Kumar, S. & Hemalatha, K. Behaviour of Transverse Wave at an Imperfectly Corrugated Interface of a Functionally Graded Structure. Phys. Wave Phen. 32, 117–134 (2024). https://doi.org/10.3103/S1541308X24700067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X24700067

Keywords:

Navigation