Skip to main content
Log in

Numerical Modeling of Tunable Reflection Scattering Angle Control Based on Ge2Sb2Te5 Phase Change Metamaterials

  • METHODS OF WAVE SCATTERING IN INHOMOGENEOUS MEDIA
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

To reduce the ohmic loss of the encoding metasurface and achieve continuous control of the scattering angle larger than 70°, we numerically study all dielectric reflective metasurface in the mid-infrared waveband. Free control of the deflection angle of the far-field scattered beam is achieved. The unit structure designed consists of the Ge2Sb2Te5 phase change material and the substrate. The phase difference between each two-unit structures is 90° and has high reflectivity in the working band. We can arrange the four units to construct metasurfaces with different coding sequences and perform Fourier convolution operations on the metasurfaces with different coding sequences to obtain flexible control of the reflected beam. The reflection characteristics of the coding sequence in the crystalline and amorphous states of the Ge2Sb2Te5 phase change material are demonstrated. The abnormal reflection angle phenomenon of the simulated structure was theoretically analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

DATA AVAILABILITY

The authors declare that the data supporting the findings of this study are available within the paper.

REFERENCES

  1. X. Jing, Y. Xu, H. Gan, Y. He, and Z. Hong, “High refractive index metamaterials by using higher order modes resonances of hollow cylindrical nanostructure in visible region,” IEEE Access 7, 144945–144956 (2019). https://doi.org/10.1109/ACCESS.2019.2945119

    Article  Google Scholar 

  2. X. Jing, S. Jin, Y. Tian, P. Liang, Q. Dong, and L. Wang, “Analysis of the sinusoidal nanopatterning grating structure,” Opt. Laser Technol. 48, 160–166 (2013). https://doi.org/10.1016/j.optlastec.2012.10.008

    Article  ADS  Google Scholar 

  3. L. Jiang, B. Fang, Z. Yan, J. Fan, C. Qi, J. Liu, Y. He, C. Li, X. Jing, H. Gan, and Z. Hong, “Terahertz high and near-zero refractive index metamaterials by double layer metal ring microstructure,” Opt. Laser Technol. 123, 105949 (2020). https://doi.org/10.1016/j.optlastec.2019.105949

    Article  Google Scholar 

  4. Z. Liu, L. Qi, F. Lan, C. Lan, J. Yang, and X. Tao, “A VO2 film-based multifunctional metasurface in the terahertz band,” Chin. Opt. Lett. 20 (1), 013602 (2022). https://doi.org/10.3788/COL202220.013602

    Article  ADS  Google Scholar 

  5. S. Cai, W. Hu, Y. Liu, J. Ning, S. Feng, C. Jin, L. Huang, and X. Li, “Optical fiber hydrogen sensor using metasurfaces composed of palladium,” Chin. Opt. Lett. 20 (5), 053601 (2022). https://doi.org/10.3788/COL202220.053601

    Article  ADS  Google Scholar 

  6. C. Jin, W. Wu, L. Cao, B. Gao, J. Chen, W. Cai, M. Ren, and J. Xu, “Fabrication of lithium niobate metasurfaces via a combination of FIB and ICP-RIE,” Chin. Opt. Lett. 20 (11), 113602 (2022). https://doi.org/10.3788/COL202220.113602

    Article  ADS  Google Scholar 

  7. P. Wang, F. He, J. Liu, F. Shu, B. Fang, T. Lang, X. Jing, and Z. Hong, “Ultra-high-Q resonances in terahertz all-silicon metasurfaces based on bound states in the continuum,” Photonics Res. 10 (12), 2743–2750 (2022). https://doi.org/10.1364/PRJ.470657

    Article  Google Scholar 

  8. Y. Zhu, B. Lu, Z. Fan, F. Yue, X. Zang, A. V. Balakin, A. P. Shkurinov, Y. Zhu, and S. Zhuang, “Geometric metasurface for polarization synthesis and multidimensional multiplexing of terahertz converged vortices,” Photonics Res. 10 (6), 1517–1532 (2022). https://doi.org/10.1364/PRJ.455459

    Article  Google Scholar 

  9. B. Fang, Z. Cai, Y. Peng, C. Li, Z. Hong, and X. Jing, “Realization of ultrahigh refractive index in terahertz region by multiple layers coupled metal ring metamaterials,” J. Electromagn. Waves Appl. 33 (11), 1375–1390 (2019). https://doi.org/10.1080/09205071.2019.1608868

    Article  ADS  Google Scholar 

  10. B. Fang, B. Li, Y. Peng, C. Li, Z. Hong, and X. Jing, “Polarization-independent multiband metamaterials absorber by fundamental cavity mode of multilayer microstructure,” Microwave Opt. Technol. Lett. 61 (10), 2385–2391 (2019). https://doi.org/10.1002/mop.31890

    Article  Google Scholar 

  11. W. Wang, X. Jing, J. Zhao, Y. Li, and Y. Tian, “Improvement of accuracy of simple methods for design and analysis of a blazed phase grating microstructure,” Opt. Appl. 47 (2), 183–198 (2017). https://doi.org/10.5277/oa170202

    Article  Google Scholar 

  12. X. Jing, X. Gui, P. Zhou, and Z. Hong, “Physical explanation of Fabry–Pérot cavity for broadband bilayer metamaterials polarization converter,” J. Lightwave Technol. 36 (12), 2322–2327 (2018). https://doi.org/10.1109/JLT.2018.2808339

    Article  ADS  Google Scholar 

  13. R. Xia, X. Jing, X. Gui, Y. Tian, and Z. Hong, “Broadband terahertz half-wave plate based on anisotropic polarization conversion metamaterials,” Opt. Mater. Express 7 (3), 977–988 (2017). https://doi.org/10.1364/OME.7.000977

    Article  ADS  Google Scholar 

  14. J. Zhao, X. Jing, W. Wang, Y. Tian, D. Zhu, and G. Shi, “Steady method to retrieve effective electromagnetic parameters of bianisotropic metamaterials at one incident direction in the terahertz region,” Opt. Laser Technol. 95, 56–62 (2017). https://doi.org/10.1016/j.optlastec.2017.04.001

    Article  ADS  Google Scholar 

  15. Y. Zhang, X. Zeng, L. Ma, R. Zhang, Z. Zhan, C. Chen, X. Ren, C. He, C. Liu, and C. Cheng, “Manipulation for superposition of orbital angular momentum states in surface plasmon polaritons,” Adv. Opt. Mater. 7 (18), 1900372 (2019). https://doi.org/10.1002/adom.201900372

    Article  Google Scholar 

  16. Z. Li, H. Liu, X. Zhang, Y. Zhang, R. Zhang, S. Xu, Y. Tang, X. Wang, J. Zhang, L. Ma, and C. Cheng, “Metasurface of deflection prism phases for generating non-diffracting optical vortex lattices,” Opt. Express 26 (22), 28228–28237 (2018). https://doi.org/10.1364/OE.26.028228

    Article  ADS  Google Scholar 

  17. W. Zhu, M. Jiang, H. Guan, J. Yu, H. Lu, J. Zhang, and Z. Chen, “Tunable spin splitting of Laguerre–Gaussian beams in graphene metamaterials,” Photonics Res. 5 (6), 684–688 (2017). https://doi.org/10.1364/PRJ.5.000684

    Article  Google Scholar 

  18. M. Jiang, W. Zhu, H. Guan, J. Yu, H. Lu, J. Tan, J. Zhang, and Z. Chen, “Giant spin splitting induced by orbital angular momentum in an epsilon-near-zero metamaterial slab,” Opt. Lett. 42 (17), 3259–3262 (2017). https://doi.org/10.1364/OL.42.003259

    Article  ADS  Google Scholar 

  19. H. Guan, J. Hong, X. Wang, J. Ming, Z. Zhang, A. Liang, X. Han, J. Dong, W. Qiu, Z. Chen, H. Lu, and H. Zhang, “Broadband, high-sensitivity graphene photodetector based on ferroelectric polarization of lithium niobate,” Adv. Opt. Mater. 9 (16), 2100245 (2021). https://doi.org/10.1002/adom.202100245

    Article  Google Scholar 

  20. Z. Huang, M. Wang, Y. Li, J. Shang, K. Li, W. Qiu, J. Dong, H. Guan, Z. Chen, and H. Lu, “Highly efficient second harmonic generation of thin film lithium niobate nanograting near bound states in the continuum,” Nanotechnology 32 (32), 325207 (2021). https://doi.org/10.1088/1361-6528/abfe23

    Article  Google Scholar 

  21. X. Liu, S. Li, C. He, Z. Li, G. Huang, and X. Cao, “Multiple orbital angular momentum beams with high-purity of transmission-coding metasurface,” Adv. Theory Simul. 6 (4), 2200842 (2023). https://doi.org/10.1002/adts.202200842

    Article  Google Scholar 

  22. S. J. Li, Z. Y. Li, G. S. Huang, X. B. Liu, R. Q. Li, and X. Y. Cao, “Digital coding transmissive metasurface for multi-OAM-beam,” Front. Phys. 17 (6), 62501 (2022). https://doi.org/10.1007/s11467-022-1179-9

    Article  ADS  Google Scholar 

  23. S. J. Li, B. W. Han, Z. Y. Li, X. B. Liu, G. S. Huang, R. Q. Li, and X. Y. Cao, “Transmissive coding metasurface with dual-circularly polarized multi-beam,” Opt. Express 30 (15), 26362–26376 (2022). https://doi.org/10.1364/OE.466036

    Article  ADS  Google Scholar 

  24. X. Lu, X. Zeng, H. Lv, Y. Han, Z. Mou, C. Liu, S. Wang, and S. Teng, “Polarization controllable plasmonic focusing based on nanometer holes,” Nanotechnology 31 (13), 135201 (2020). https://doi.org/10.1088/1361-6528/ab62d0

    Article  ADS  Google Scholar 

  25. H. Lv, X. Lu, Y. Han, Z. Mou, C. Zhou, S. Wang, and S. Teng, “Metasurface cylindrical vector light generators based on nanometer holes,” New J. Phys. 21, 123047 (2019). https://doi.org/10.1088/1367-2630/ab5f44

    Article  Google Scholar 

  26. H. Lv, X. Lu, Y. Han, Z. Mou, and S. Teng, “Multifocal metalens with a controllable intensity ratio,” Opt. Lett. 44 (10), 2518–2521 (2019). https://doi.org/10.1364/OL.44.002518

    Article  ADS  Google Scholar 

  27. X. He and W. Cao, “Tunable terahertz hybrid metamaterials supported by 3D Dirac semimetals,” Opt. Mater. Express 13 (2), 413–422 (2023). https://doi.org/10.1364/OME.478596

    Article  ADS  Google Scholar 

  28. X. He, F. Lin, F. Liu, and W. Shi, “3D Dirac semimetals supported tunable terahertz BIC metamaterials,” Nanophotonics 11 (21), 4705–4714 (2022). https://doi.org/10.1515/nanoph-2022-0285

    Article  Google Scholar 

  29. J. Peng, X. He, C. Shi, J. Leng, F. Lin, F. Liu, H. Zhang, and W. Shi, “Investigation of graphene supported terahertz elliptical metamaterials,” Phys. E 124, 114309 (2020). https://doi.org/10.1016/j.physe.2020.114309

    Article  Google Scholar 

  30. Jit. Li, J. Li, C. Zheng, Z. Yue, D. Yang, S. Wang, M. Li, Y. Zhang, and J. Yao, “Spectral amplitude modulation and dynamic near-field displaying of all-silicon terahertz metasurfaces supporting bound states in the continuum,” Appl. Phys. Lett. 119, 241105 (2021). https://doi.org/10.1063/5.0067937

  31. Jit. Li, J. Li, C. Zheng, Z. Yue, S. Wang, M. Li, H. Zhao, Y. Zhang, and J. Yao, “Active controllable spin-selective terahertz asymmetric transmission based on all-silicon metasurfaces,” Appl. Phys. Lett. 118, 221110 (2021). https://doi.org/10.1063/5.0053236

  32. Jit. Li, Z. Yue, J. Li, C. Zheng, S. Wang, M. Li, Yat. Zhang, Y. Zhang, and J. Yao, “Diverse terahertz wavefront manipulations empowered by the spatially interleaved metasurfaces,” Sci. China Inf. Sci. 66 (3), 132301 (2023). https://doi.org/10.1007/s11432-022-3499-4

  33. Jit. Li, Z. Yue, J. Li, C. Zheng, Y. Zhang, and J. Yao, “Ultra-narrowband terahertz circular dichroism driven by planar metasurface supporting chiral quasi bound states in continuum,” Opt. Laser Technol. 161, 109173 (2023). https://doi.org/10.1016/j.optlastec.2023.109173

  34. J. Zhang, X. Wei, I. D. Rukhlenko, H.-T. Chen, and W. Zhu, “Electrically tunable metasurface with independent frequency and amplitude modulations,” ACS Photonics 7 (1), 265–271 (2020). https://doi.org/10.1021/acsphotonics.9b01532

    Article  Google Scholar 

  35. M. R. Akram, M. Q. Mehmood, X. Bai, R. Jin, M. Premaratne, and W. Zhu, “High efficiency ultrathin transmissive metasurfaces,” Adv. Opt. Mater. 7 (11), 1801628 (2019). https://doi.org/10.1002/adom.201801628

    Article  Google Scholar 

  36. M. R. Akram, X. Bai, R. Jin, G. A. E. Vandenbosch, M. Premaratne, and W. Zhu, “Photon spin hall effect-based ultra-thin transmissive metasurface for efficient generation of OAM waves,” IEEE Trans. Antennas Propag. 67 (7), 4650–4658 (2019). https://doi.org/10.1109/TAP.2019.2905777

    Article  ADS  Google Scholar 

  37. J. Li, R. Jin, J. Geng, X. Liang, K. Wang, M. Premaratne, and W. Zhu, “Design of a broadband metasurface luneburg lens for full-angle operation,” IEEE Trans. Antennas Propag. 67 (4), 2442–2451 (2019). https://doi.org/10.1109/TAP.2018.2889006

    Article  ADS  Google Scholar 

  38. Jit. Li, J. Li, C. Zheng, S. Wang, M. Li, H. Zhao, Jia. Li, Y. Zhang, and J. Yao, “Dynamic control of reflective chiral terahertz metasurface with a new application developing in full grayscale near field imaging,” Carbon 172, 189–199 (2021). https://doi.org/10.1016/j.carbon.2020.09.090

  39. Jit. Li, G. Wang, Z. Yue, J. Liu, J. Li, C. Zheng, Yat. Zhang, Y. Zhang, and J. Yao, “Dynamic phase assembled terahertz metalens for reversible conversion between linear polarization and arbitrary circular polarization,” Opto-Electron. Adv. 5 (1), 210062 (2022). https://doi.org/10.29026/oea.2022.210062

  40. Jit. Li, J. Li, C. Zheng, Z. Yue, S. Wang, M. Li, H. Zhao, Y. Zhang, and J. Yao, “Free switch between bound states in the continuum (BIC) and quasi-BIC supported by graphene-metal terahertz metasurfaces,” Carbon 182, 506–515 (2021). https://doi.org/10.1016/j.carbon.2021.06.037

  41. M. R. Akram, G. Ding, K. Chen, Y. Feng, and W. Zhu, “Ultrathin single layer metasurfaces with ultra-wideband operation for both transmission and reflection,” Adv. Mater. 32 (12), 1907308 (2020). https://doi.org/10.1002/adma.201907308

    Article  Google Scholar 

  42. T. Liu, M. Zhu, W. Du, J. Shi, J. Sun, Y. Chai, and J. Shao, “A nodule dome removal strategy to improve the laser-induced damage threshold of coatings,” High Power Laser Sci. Eng. 10, e30 (2022). https://doi.org/10.1017/hpl.2022.24

    Article  Google Scholar 

  43. G. Wang, J. Song, Y. Chen, S. Ren, P. Ma, W. Liu, T. Yao, and P. Zhou, “Six kilowatt record all-fiberized and narrow-linewidth fiber amplifier with near-diffraction-limited beam quality,” High Power Laser Sci. Eng. 10, e22 (2022). https://doi.org/10.1017/hpl.2022.12

    Article  Google Scholar 

  44. C. C. Gheorghiu, M. Cerchez, E. Aktan, R. Prasad, F. Yilmaz, N. Yilmaz, D. Popa, O. Willi, and V. Leca, “Fabrication of micrometre-sized periodic gratings in free-standing metallic foils for laser-plasma experiments,” High Power Laser Sci. Eng. 10, e3 (2022). https://doi.org/10.1017/hpl.2021.57

    Article  Google Scholar 

  45. Z. Yue, Jit. Li, J. Li, C. Zheng, J. Liu, G. Wang, H. Xu, M. Chen, Yat. Zhang, Y. Zhang, and J. Yao, “Terahertz metasurface zone plates with arbitrary polarizations to a fixed polarization conversion,” Opto-Electron. Sci. 1 (3), 210014 (2022). https://doi.org/10.29026/oes.2022.210014

    Article  Google Scholar 

  46. P. H. He, L. Y. Niu, Y. Fan, H. C. Zhang, L. P. Zhang, D. Yao, W. X. Tang, and T. J. Cui, “Active odd-mode-metachannel for single-conductor systems,” Opto-Electron. Adv. 5 (8), 210119 (2022). https://doi.org/10.29026/oea.2022.210119

    Article  Google Scholar 

  47. K. Liu, J. Wu, Z. He, and L. Cao, “4K-DMDNet: Diffraction model-driven network for 4K computer-generated holography,” Opto-Electron. Adv. 6 (5), 220135 (2023). https://doi.org/10.29026/oea.2023.220135

    Article  Google Scholar 

  48. L. Jiang, B. Fang, Z. Yan, C. Li, J. Fu, H. Gan, Z. Hong, and X. Jing, “Improvement of unidirectional scattering characteristics based on multiple nanospheres array,” Microwave Opt. Technol. Lett. 62 (6), 2405–2414 (2020). https://doi.org/10.1002/mop.32328

    Article  Google Scholar 

  49. M. Zhang, M. Pu, F. Zhang, Y. Guo, Q. He, X. Ma, Y. Huang, X. Li, H. Yu, and X. Luo, “Plasmonic metasurfaces for switchable photonic spin–orbit interactions based on phase change materials,” Adv. Sci. 5 (10), 1800835 (2018). https://doi.org/10.1002/advs.201800835

    Article  Google Scholar 

  50. M. N. Julian, C. Williams, S. Borg, S. Bartram, and H. J. Kim, “Reversible optical tuning of GeSbTe phase-change metasurface spectral filters for mid-wave infrared imaging,” Optica 7 (7), 746–754 (2020). https://doi.org/10.1364/OPTICA.392878

    Article  ADS  Google Scholar 

  51. W.-H. Cai, Y. Tian, S. Wang, C. You, Q. Zhou, and R.‑B. Jin, “Optimized design of the lithium niobate for spectrally-pure-state generation at MIR wavelengths using metaheuristic algorithm,” Adv. Quantum Technol. 5 (7), 2200028 (2022). https://doi.org/10.1002/qute.202200028

    Article  Google Scholar 

  52. W. B. Jeon, J. S. Moon, K.-Y. Kim, Y.-H. Ko, C. J. K. Richardson, W. Waks, and J.-H. Kim, “Plug-and-play single-photon devices with efficient fiber-quantum dot interface,” Adv. Quantum Technol. 5 (10), 2200022 (2022). https://doi.org/10.1002/qute.202200022

    Article  Google Scholar 

  53. K. C. Balram and K. Srinivasan, “Piezoelectric optomechanical approaches for efficient quantum microwave-to-optical signal transduction: The need for co-design,” Adv. Quantum Technol. 5 (3), 2100095 (2022). https://doi.org/10.1002/qute.202100095

    Article  Google Scholar 

  54. I. L. Paiva, R. Lenny, and E. Cohen, “Geometric phases and the Sagnac effect: Foundational aspects and sensing applications,” Adv. Quantum Technol. 5 (2), 2100121 (2022). https://doi.org/10.1002/qute.202100121

    Article  Google Scholar 

  55. Y. Zhang, M. Pu, J. Jin, X. Lu, Y. Guo, J. Cai, F. Zhang, Y. Ha, Q. He, M. Xu, X. Li, X. Ma, and X. Luo, “Crosstalk-free achromatic full Stokes imaging polarimetry metasurface enabled by polarization-dependent phase optimization,” Opto-Electron. Adv. 5 (11), 220058 (2022). https://doi.org/10.29026/oea.2022.220058

    Article  Google Scholar 

  56. S. Krasikov, A. Tranter, A. Bogdanov, and Yu. Kivshar, “Intelligent metaphotonics empowered by machine learning,” Opto-Electron. Adv. 5 (3), 210147 (2022). https://doi.org/10.29026/oea.2022.210147

    Article  Google Scholar 

Download references

Funding

This work was supported by Natural Science Foundation of Zhejiang Province (Nos. LY22F050001 and LZ21A040003) and National Natural Science Foundation of China (No. 62175224).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the paper.

Corresponding author

Correspondence to Bo Fang.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The text was submitted by the authors in English.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Xu, L., Liu, F. et al. Numerical Modeling of Tunable Reflection Scattering Angle Control Based on Ge2Sb2Te5 Phase Change Metamaterials. Phys. Wave Phen. 32, 105–116 (2024). https://doi.org/10.3103/S1541308X24700055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X24700055

Keywords:

Navigation