Skip to main content
Log in

Laser Imaging of Small-Scale Structural Inhomogeneities in CVD Diamond

  • INTERACTION OF LASER RADIATION WITH MATTER
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

The paper reports a possibility of using high-power femtosecond laser pulses for imaging and subsequent study (by means of optical microscopy) of small-scale structural inhomogeneities in synthetic diamond single crystals. The irradiation of diamond by laser pulses in the intense self-focusing mode creates conditions for multiple optical microscopic breakdowns, whose distribution in the diamond bulk reflects spatial oscillations of local breakdown threshold. The breakdown-produced sp2 inclusions form ordered stripe microstructures with a characteristic period of several microns. It is shown that spatial oscillations of breakdown threshold correlate with changes in the local concentration of impurity–vacancy defects NV and SiV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. C. Everson and P. Molian, “Fabrication of polycrystalline diamond microtool using a Q-switched Nd:YAG laser,” Int. J. Adv. Manuf. Technol. 45, 521–530 (2009). https://doi.org/10.1007/s00170-009-1999-6

    Article  Google Scholar 

  2. A. Joswig, S. Risse, R. Eberhardt, and A. Tünnermann, “Laser generated and structured prototypes of diamond tool tips for microoptics fabrication,” Proc. 25th Annual Meeting of the American Society for Precision Engineering (Atlanta, USA, 2010).

  3. G. Eberle, C. Dold, and K. Wegener, “Laser fabrication of diamond micro-cutting tool-related geometries using a high-numerical aperture micro-scanning system,” Int. J. Adv. Manuf. Technol. 81, 1117–1125 (2015). https://doi.org/10.1007/s00170-015-7240-x

    Article  Google Scholar 

  4. J. D. Hunn, S. P. Withrow, C. W. White, R. E. Clausing, L. Heatherly, and C. P. Christensen, “Fabrication of single-crystal diamond microcomponents,” Appl. Phys. Lett. 65, 3072–3074 (1994). https://doi.org/10.1063/1.112959

    Article  ADS  Google Scholar 

  5. S. Terentyev, V. Blank, S. Polyakov, S. Zholudev, A. Snigirev, M. Polikarpov, T. Kolodziej, J. Qian, H. Zhou, and Yu. Shvyd’ko, “Parabolic single-crystal diamond lenses for coherent x-ray imaging,” Appl. Phys. Lett. 107, 111108 (2015). https://doi.org/10.1063/1.4931357

    Article  ADS  Google Scholar 

  6. T. V. Kononenko, V. G. Ralchenko, E. E. Ashkinazi, M. Polikarpov, P. Ershov, S. Kuznetsov, V. Yunkin, I. Snigireva, and V. I. Konov, “Fabrication of polycrystalline diamond refractive X-ray lens by femtosecond laser processing,” Appl. Phys. A 122, 152 (2016). https://doi.org/10.1007/s00339-016-9683-9

    Article  ADS  Google Scholar 

  7. V. V. Kononenko, V. I. Konov, S. M. Pimenov, A. M. Prokhorov, V. S. Pavel’ev, and V. A. Soifer, “Diamond diffraction optics for CO2 lasers,” Quantum Electron. 29 (1), 9–10 (1999). https://doi.org/10.1070/QE1999v029n01ABEH001402

    Article  ADS  Google Scholar 

  8. V. V. Kononenko, V. I. Konov, S. M. Pimenov, A. M. Prokhorov, V. S. Pavelyev, V. A. Soifer, B. Lüdge, and M. R. Duparré, “Laser shaping of diamond for IR diffractive optical elements,” Proc. SPIE 4426, 128–134 (2002). https://doi.org/10.1117/12.456884

    Article  ADS  Google Scholar 

  9. B. Caylar, M. Pomorski, and P. Bergonzo, “Laser-processed three dimensional graphitic electrodes for diamond radiation detectors,” Appl. Phys. Lett. 103 (4), 043504 (2013). https://doi.org/10.1063/1.4816328

    Article  ADS  Google Scholar 

  10. S. Lagomarsino, M. Bellini, C. Corsi, F. Gorelli, G. Parrini, M. Santoro, and S. Sciortino, “Three-dimensional diamond detectors: Charge collection efficiency of graphitic electrodes,” Appl. Phys. Lett. 103 (23), 233507 (2013). https://doi.org/10.1063/1.4839555

    Article  ADS  Google Scholar 

  11. T. Kononenko, V. Ralchenko, A. Bolshakov, V. Konov, P. Allegrini, M. Pacilli, G. Conte, and E. Spiritti, “All-carbon detector with buried graphite pillars in CVD diamond,” Appl. Phys. A 114, 297–300 (2014). https://doi.org/10.1007/s00339-013-8091-7

    Article  ADS  Google Scholar 

  12. G. Conte, P. Allegrini, M. Pacilli, S. Salvatori, T. Kononenko, A. Bolshakov, V. Ralchenko, and V. Konov, “Three-dimensional graphite electrodes in CVD single crystal diamond detectors: Charge collection dependence on impinging β-particles geometry,” Nucl. Instrum. Methods Phys. Res., Sect. A 799, 10–16 (2015). https://doi.org/10.1016/j.nima.2015.07.024

    Article  Google Scholar 

  13. T. V. Kononenko, K. K. Ashikkalieva, V. V. Kononenko, E. V. Zavedeev, M. A. Dezhkina, M. S. Komlenok, E. E. Ashkinazi, V. V. Bukin, and V. I. Konov, “Diamond photoconductive antenna for terahertz generation equipped with buried graphite electrodes,” Photonics 10 (1), 75 (2023). https://doi.org/10.3390/photonics10010075

    Article  Google Scholar 

  14. M. Shimizu, Y. Shimotsuma, M. Sakakura, T. Yuasa, H. Homma, Y. Minowa, K. Tanaka, K. Miura, and K. Hirao, “Periodic metallo-dielectric structure in diamond,” Opt. Express 17 (1), 46–54 (2009). https://doi.org/10.1364/OE.17.000046

    Article  ADS  Google Scholar 

  15. T. V. Kononenko, P. N. Dyachenko, and V. I. Konov, “Diamond photonic crystals for the IR spectral range,” Opt. Lett. 39 (24), 6962–6965 (2014). https://doi.org/10.1364/OL.39.006962

    Article  ADS  Google Scholar 

  16. A. Courvoisier, M. J. Booth, and P. S. Salter, “Inscription of 3D waveguides in diamond using an ultrafast laser,” Appl. Phys. Lett. 109 (3), 031109 (2016). https://doi.org/10.1063/1.4959267

    Article  ADS  Google Scholar 

  17. B. Sotillo, V. Bharadwaj, J. P. Hadden, M. Sakakura, A. Chiappini, T. T. Fernandez, S. Longhi, O. Jedrkiewicz, Y. Shimotsuma, L. Criante, R. Osellame, G. Galzerano, M. Ferrari, K. Miura, R. Ramponi, P. E. Barclay, and S. M. Eaton, “Diamond photonics platform enabled by femtosecond laser writing,” Sci. Rep. 6, 35566 (2016). https://doi.org/10.1038/srep35566

    Article  ADS  Google Scholar 

  18. V. Bharadwaj, O. Jedrkiewicz, J. P. Hadden, B. Sotillo, M. R. Vázquez, P. Dentella, T. T. Fernandez, A. Chiappini, A. N. Giakoumaki, T. L. Phu, M. Bollani, M. Ferrari, R. Ramponi, P. E. Barclay, and S. M. Eaton, “Femtosecond laser written photonic and microfluidic circuits in diamond,” J. Phys.: Photonics 1 (2), 022001 (2019). https://doi.org/10.1088/2515-7647/ab0c4e

    Article  ADS  Google Scholar 

  19. T. V. Kononenko, K. K. Ashikkalieva, V. V. Kononenko, A. P. Bol’shakov, V. G. Ral’chenko, and V. I. Konov, “Mapping of the optical breakdown threshold in CVD diamond,” Phys. Wave Phenom. 31 (2), 59–66 (2023). https://doi.org/10.3103/S1541308X23020085

    Article  ADS  Google Scholar 

  20. P. M. Martineau, S. C. Lawson, A. J. Taylor, S. J. Quinn, D. J. F. Evans, and M. J. Crowder, “Identification of synthetic diamond grown using chemical vapor deposition (CVD),” Gems Gemol. 40 (1), 2–25 (2004). https://www.gia.edu/doc/Identification-of-Synthetic-Diamond-Grown-Using-Chemical-Vapor-Deposition-CVD.pdf

  21. R. A. Khmel’nitskii, Introduction to Diamond Gemology (Alrosa Technol., Moscow, 2021) [in Russian].

    Google Scholar 

  22. A. M. Zaitsev, N. M. Kazuchits, V. N. Kazuchits, K. S. Moe, M. S. Rusetsky, O. V. Korolik, K. Kitajima, J. E. Butler, and W. Wang, “Nitrogen-doped CVD diamond: Nitrogen concentration, color and internal stress,” Diamond Relat. Mater. 105, 107794 (2020). https://doi.org/10.1016/j.diamond.2020.107794

    Article  ADS  Google Scholar 

  23. C. Dorfer, D. Hits, L. Kasmi, G. Kramberger, M. Lucchini, M. Mikuž, and R. Wallny, “Three-dimensional charge transport mapping by two-photon absorption edge transient-current technique in synthetic single-crystalline diamond,” Appl. Phys. Lett. 114, 203504 (2019). https://doi.org/10.1063/1.5090850

    Article  ADS  Google Scholar 

  24. I. I. Vlasov and V. G. Ralchenko, “Optical study of defect distributions in CVD diamond,” Defect Diffus. Forum 226228, 61–68 (2004). https://doi.org/10.4028/www.scientific.net/DDF.226-228.61

  25. R. M. Erasmus, R. D. Daniel, and J. D. Comins, “Three-dimensional mapping of stresses in plastically deformed diamond using micro-Raman and photoluminescence spectroscopy,” J. Appl. Phys. 109 (1), 013527 (2011). https://doi.org/10.1063/1.3531548

    Article  ADS  Google Scholar 

  26. B. Willems, A. Tallaire, and J. Archard, “Optical study of defects in thick undoped CVD synthetic diamond layers,” Diamond Relat. Mater. 41, 25–33 (2014). https://doi.org/10.1016/j.diamond.2013.09.01

    Article  ADS  Google Scholar 

  27. L. H. Robins and D. R. Black, “Defect mapping of a synthetic diamond single crystal by cathodoluminescence spectroscopy,” J. Mater. Res. 9 (5), 1298–1307 (1994). https://doi.org/10.1557/JMR.1994.1298

    Article  ADS  Google Scholar 

  28. A. Cremades and J. Piqueras, “Luminescence study of structural changes induced by laser cutting in diamond films,” J. Appl. Phys. 78 (5), 3353–3356 (1995). https://doi.org/10.1063/1.359960

    Article  ADS  Google Scholar 

  29. S. Masuya, K. Hanada, T. Moribayashi, H. Sumiya, and M. Kasu, “Determination of partial dislocations of stacking fault in (111) single crystal diamond grown on (111) seed crystal by synchrotron X-ray topography,” J. Cryst. Growth 468, 439–442 (2017). https://doi.org/10.1016/j.jcrysgro.2016.11.094

    Article  ADS  Google Scholar 

  30. T. V. Kononenko, E. V. Zavedeev, K. Kh. Ashikkalieva, and V. I. Konov, “Effect of wavelength on propagation of high-power femtosecond laser pulses in diamond,” Komput. Opt. (2024) [in Russian] (in press).

  31. A. M. Zaitsev, Optical Properties of Diamond. Data Handbook (Springer-Verlag, Berlin–Heidelberg, 2001).

  32. M. Girolami, A. Bellucci, P. Calvani, S. Orlando, V. Valentini, and D. M. Trucchi, “Raman investigation of femtosecond laser-induced graphitic columns in single-crystal diamond,” Appl. Phys. A 117 (1), 143–147 (2014). https://doi.org/10.1007/s00339-014-8310-x

    Article  ADS  Google Scholar 

  33. K. K. Ashikkalieva, T. V. Kononenko, E. A. Obraztsova, E. V. Zavedeev, A. A. Khomich, E. E. Ashkinazi, and V. I. Konov, “Direct observation of graphenic nanostructures inside femtosecond-laser modified diamond,” Carbon 102, 383–389 (2016). https://doi.org/10.1016/j.carbon.2016.02.044

    Article  Google Scholar 

  34. E. M. Hsu, N. A. Mailman, G. A. Botton, and H. K. Haugen, “Microscopic investigation of single-crystal diamond following ultrafast laser irradiation,” Appl. Phys. A 103 (1), 185–192 (2011). https://doi.org/10.1007/s00339-010-5986-4

    Article  ADS  Google Scholar 

  35. M. Beresna, M. Gecevičius, and P. G. Kazansky, “Ultrafast laser direct writing and nanostructuring in transparent materials,” Adv. Opt. Photonics 6 (3), 293–339 (2014). https://doi.org/10.1364/AOP.6.000293

    Article  ADS  Google Scholar 

  36. R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: Recent advances,” Prog. Quantum Electron. 38 (3), 119–156 (2014). https://doi.org/10.1016/j.pquantelec.2014.03.002

    Article  ADS  Google Scholar 

  37. K. K. Ashikkalieva, “Laser-induced graphitization of diamond bulk: The state of the art (a review),” Phys. Wave Phenom. 30 (1), 1–16 (2022). https://doi.org/10.3103/S1541308X22010034

    Article  ADS  Google Scholar 

  38. S. M. Pimenov, A. A. Khomich, B. Neuenschwander, B. Jäggi, and V. Romano, “Picosecond-laser bulk modification induced enhancement of nitrogen-vacancy luminescence in diamond,” J. Opt. Soc. Am. B 33 (3), B49–B55 (2016). https://doi.org/10.1364/JOSAB.33.000B49

    Article  Google Scholar 

  39. H. Jayakumar, J. Henshaw, S. Dhomkar, D. Pagliero, A. Laraoui, N. B. Manson, R. Albu, M. W. Doherty, and C. A. Meriles, “Optical patterning of trapped charge in nitrogen-doped diamond,” Nat. Commun. 7, 12660 (2016). https://doi.org/10.1038/ncomms12660

    Article  ADS  Google Scholar 

  40. U. F. S. D’Haenens-Johansson, A. M. Edmonds, B. L. Green, M. E. Newton, G. Davies, P. M. Martineau, R. U. A. Khan, and D. J. Twitchen, “Optical properties of the neutral silicon split-vacancy center in diamond,” Phys. Rev. B 84 (24), 245208 (2011). https://doi.org/10.1103/PhysRevB.84.245208

    Article  ADS  Google Scholar 

  41. J. Isberg, A. Tajani, and D. J. Twitchen, “Photoionization measurement of deep defects in single-crystalline CVD diamond using the transient-current technique,” Phys. Rev. B 73 (24), 245207 (2006). https://doi.org/10.1103/PhysRevB.73.245207

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (grant no. 22-22-00055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Ashikkalieva.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by Yu. Sin’kov

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashikkalieva, K.K., Kononenko, T.V., Ashkinazi, E.E. et al. Laser Imaging of Small-Scale Structural Inhomogeneities in CVD Diamond. Phys. Wave Phen. 32, 73–82 (2024). https://doi.org/10.3103/S1541308X2470002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X2470002X

Keywords:

Navigation