Skip to main content
Log in

Underwater Lidar: Remote Sensing in Strongly Scattering Media

  • ACOUSTICS AND OPTICS OF OPEN RESERVOIRS
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

A lidar backscattering signal from an opaque target object, passed through a 9-m water layer with scattering meshes on the laser beam path, has been detected (for the first time, to the best of our knowledge) when sensing by pulses with eye-safe radiation energy density (~1 μJ/cm2). The new principle of laser sensing makes it possible to measure the position of meshes on the lidar path, in contrast to conventional laser rangefinders, which measure the distance to only the first target. The lidar has been developed based on a pulsed diode-pumped Nd3+:YAG laser (532 nm, 3 ns, 2 µJ/pulse, pulse repetition rate 4 kHz) and gated single-photon avalanche photodiode (SPAD) with a gain up to ~106, serving as a detector. The large gain of the detector and suppression of its noise by gating ensured a signal-to-noise ratio of ≈35 for the target signal, which provides an estimate of underwater sensing range up to 30 m, according to the 3σ detection criterion. Compact lidars based on diode lasers (~1 µJ/pulse) with a radiation wavelength (~450 nm) in the spectral range of minimum losses in water and the increase in the safety of manned and unmanned underwater vehicles at early detection of nets (invisible for sonars) by a lidar are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. S. M. Pershin, V. S. Makarov, M. Ya. Grishin, V. A. Zavozin, A. L. Koromyslov, V. N. Lednev, P. A. Sdviz-henskii, I. Prochazka, I. M. Tupitsyn, and E. A. Cheshev, “New lasing mode of a diode laser: A 200-picosecond leading edge of a nanosecond pulse,” Bull. Lebedev Phys. Inst. 50 (Suppl. 3), S383–S388 (2023). https://doi.org/10.3103/S1068335623150125

    Article  Google Scholar 

  2. V. A. Zavozin, M. Ya. Grishin, V. N. Lednev, V. S. Makarov, and S. M. Pershin, “Eye-safe photon counting LIDAR for magmatic aerosol detection,” Laser Phys. 32 (12), 125601 (2022). https://doi.org/10.1088/1555-6611/aca15d

    Article  ADS  Google Scholar 

  3. Sh. Shen, Zh. Cao, and Ch. Lai, “Scanning scheme for underwater high-rise pile cap foundation based on imaging sonar,” Sustainability 15 (8), 6402 (2023). https://doi.org/10.3390/su15086402

    Article  Google Scholar 

  4. S. M. Pershin, B. G. Katsnelson, M. Ya. Grishin, V. N. Lednev, V. A. Zavozin, and I. Ostrovsky, “Laser remote sensing of Lake Kinneret by compact fluorescence LiDAR,” Sensors 22 (19), 7307 (2022). https://doi.org/10.3390/s22197307

    Article  ADS  Google Scholar 

  5. M. Ya. Grishin, V. N. Lednev, S. M. Pershin, and P. O. Kapralov, “Ultracompact fluorescence lidar based on a diode laser (405 nm, 150 mW) for remote sensing of waterbodies and the underlying surface from unmanned aerial vehicles,” Dokl. Phys. 66 (6), 153–155 (2021). https://doi.org/10.1134/S1028335821060057

    Article  ADS  Google Scholar 

  6. S. M. Pershin, M. Ya. Grishin, V. A. Zavozin, V. N. Lednev, V. A. Lukyanchenko, and V. S. Makarov, “Aerosol layers sensing by an eye-safe lidar near the El-brus summit,” Laser Phys. Lett. 17 (2), 026003 (2020). https://doi.org/10.1088/1612-202X/ab66c4

    Article  ADS  Google Scholar 

  7. A. F. Bunkin, and S. M. Pershin, “Lidar measurement of dynamics of spatial characteristics of aerosol in boundary atmospheric layer under urban conditions,” Phys. Wave Phenom. 13 (1), 37–43 (2005).

    Google Scholar 

  8. I. Bjørnø, M. Grishin, and S. Pershin, Ecological catastrophe in Arctic: An anomalous Gulf Stream heating (to 21°C) and shift (~200 km) to Greenland due to ocean pollution by rainbow oil film, Proc. 5th Underwater Acoustics Conf. and Exhibition (UACE2019), Hersonissos, Crete, Greece, June 30–July 5, 2019, Ed. by J. S. Papadakis, pp. 129–138. ISSN 2408-0195.

  9. N. G. Jerlov, Optical Oceanography (Elsevier, 1976).

    Google Scholar 

  10. X. Zhang, L. Hu, and M.-X. He, “Scattering by pure seawater: Effect of salinity,” Opt. Express 17 (7), 5698–5710 (2009). https://doi.org/10.1364/OE.17.005698

    Article  ADS  Google Scholar 

  11. G. Chang, M. S. Twardowski, Y. You, M. Moline, P.-W. Zhai, S. Freeman, M. Slivkoff, F. Nencioli, and G. W. Kattawar, “Platform effects on optical variability and prediction of underwater visibility,” Appl. Opt. 49 (15), 2784–2796 (2010). https://doi.org/10.1364/AO.49.002784

    Article  ADS  Google Scholar 

  12. S. M. Pershin, A. F. Bunkin, V. K. Klinkov, V. N. Lednev, D. Lushnikov, E. G. Morozov, and R. N. Yul’metov, “Remote sensing of Arctic fjords by Raman lidar: Heat transfer screening by layer of glacier’s relict water,” Phys. Wave Phenom. 20 (3), 212–222 (2012). https://doi.org/10.3103/S1541308X12030090

    Article  ADS  Google Scholar 

  13. A. F. Bunkin, V. K. Klinkov, V. N. Lednev, D. L. Lushnikov, A. V. Marchenko, E. G. Morozov, S. M. Pershin, and R. N. Yulmetov, “Remote sensing of sea water and drifting ice in Svalbard fjords by compact Raman lidar,” Appl. Opt. 51 (22), 5477–5485 (2012). https://doi.org/10.1364/AO.51.005477

    Article  ADS  Google Scholar 

  14. D. H. Sliney and M. Wolbarsht, Safety with Lasers and other Optical Sources: A Comprehensive Handbook (Springer, New York, 2013).

    Google Scholar 

  15. S. M. Pershin, “Trouble-free compact lidar for in/outdoor atmosphere monitoring,” Proc. SPIE 2506, 330–341 (1995). https://doi.org/10.1117/12.221044

    Article  ADS  Google Scholar 

  16. A. V. Myasnikov, S. M. Pershin, M. Ya. Grishin, V. A. Zavozin, V. S. Makarov, and A. A. Ushakov, “Estim-ation of the influence of meteorological factors on the aerosol lidar signal in tunnels above the Elbrus volcano chamber,” Phys. Wave Phenom. 30 (2), 119–127 (2022). https://doi.org/10.3103/S1541308X22020054

    Article  ADS  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation (project 19-19-00712).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Pershin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Sin’kov

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pershin, S.M., Bunkin, A.F., Zavozin, V.A. et al. Underwater Lidar: Remote Sensing in Strongly Scattering Media. Phys. Wave Phen. 31, 406–411 (2023). https://doi.org/10.3103/S1541308X23060080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X23060080

Keywords:

Navigation