Skip to main content
Log in

Application of Warping Transform for the Analysis of the Acoustic Mode Coupling due to a Local Inhomogeneity in Shallow Water

  • ACOUSTICS AND OPTICS OF OPEN RESERVOIRS
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

The possibility of observing the mode coupling effect, caused by a local inhomogeneity, is studied for a long-range stationary acoustic track between a single sound source and a single receiver in a shallow-water waveguide. This effect manifests itself in the form of oscillations of normal mode amplitudes in the frequency domain and can be used to localize inhomogeneities. An analytical formula linking the oscillation period of the first-mode amplitude with the distance to the inhomogeneity is proposed. Numerical experiments with a model inhomogeneity in the form of a local bottom rise show that the frequency dependence of the mode amplitude can be selected not only at a vertical line array but also at a single receiver, with the use of warping transform. In this case, the receiver depth should correspond to zero of the second-mode vertical profile. The dependence of the mode amplitude oscillations on the local inhomogeneity size is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. W. Munk and C. Wunsch, “Ocean acoustic tomography: Rays and modes,” Rev. Geophys. 21 (4), 777–793 (1983). https://doi.org/10.1029/RG021i004p00777

    Article  ADS  Google Scholar 

  2. B. Katsnelson, V. Petnikov, and J. Lynch, Fundamentals of Shallow Water Acoustics (Springer-Verlag, New York, 2012). https://doi.org/10.1007/978-1-4419-9777-7

  3. V. M. Kuz’kin, Y.-T. Lin, A. A. Lunkov, J. F. Lynch, and V. G. Petnikov, “Frequency shifts of the sound field interference pattern on oceanic shelf in summer conditions,” Acoust. Phys. 57 (3), 381–390 (2011). https://doi.org/10.1134/S1063771011030092

    Article  ADS  Google Scholar 

  4. V. M. Kuz’kin, M. V. Kutsov, and S. A. Pereselkov, “Frequency shifts of sound field maxima in few-mode propagation, which are initiated by internal wave solitons,” Phys. Wave Phenom. 21 (2), 139–151 (2013). https://doi.org/10.3103/S1541308X13020064

    Article  ADS  Google Scholar 

  5. Y. Jiang, V. Grigorev, and B. Katsnelson, “Sound field fluctuations in shallow water in the presence of moving nonlinear internal waves,” J. Mar. Sci. Eng. 10 (1), 119 (2022). https://doi.org/10.3390/jmse10010119

    Article  Google Scholar 

  6. M. Badiey, V. M. Kuz’kin, G. A. Lyakhov, S. A. Pereselkov, D. Yu. Prosovetskiy, and S. A. Tkachenko, “Intense internal waves and their manifestation in the interference patterns of received signals on oceanic shelf. Part II,” Phys. Wave Phenom. 27 (4), 313–319 (2019). https://doi.org/10.3103/S1541308X19040125

    Article  ADS  Google Scholar 

  7. V. A. Grigorev, B. G. Katsnelson, and J. F. Lynch, “Bottom attenuation estimation using sound intensity fluctuations due to mode coupling by nonlinear internal waves in shallow water,” J. Acoust. Soc. Am. 140 (5), 3980–3994 (2016). https://doi.org/10.1121/1.4967852

    Article  ADS  Google Scholar 

  8. K. G. Sabra, S. Conti, P. Roux, T. Akal, W. A. Kuperman, J. M. Stevenson, A. Tesei, and P. Guerrini, “Experimental demonstration of a high-frequency forward scattering acoustic barrier in a dynamic coastal environment,” J. Acoust. Soc. Am. 127 (6), 3430–3439 (2010). https://doi.org/10.1121/1.3418662

    Article  ADS  Google Scholar 

  9. B. Lei, K. Yang, and Y. Ma, “Forward scattering detection of a submerged object by a vertical hydrophone array,” J. Acoust. Soc. Am. 136 (6), 2998–3007 (2010). https://doi.org/10.1121/1.4901709

    Article  ADS  Google Scholar 

  10. A. I. Khil’ko, I. P. Smirnov, E. A. Mareev, K. A. Sidorov, V. E. Konovalov, and V. V. Kovalenko, “Detection of spatially localized inhomogeneities in refractive waveguides when probing with focused high-frequency acoustic pulses,” Radiophys. Quantum Electron. 65 (7), 496–513 (2022). https://doi.org/10.1007/s11141-023-10231-5

    Article  ADS  Google Scholar 

  11. T. C. Yang, C. F. Huang, S. H. Huang, and J. Y. Liu, “Frequency striations induced by moving nonlinear internal waves and applications,” IEEE J. Ocean. Eng. 42 (3), 663–671 (2016). https://doi.org/10.1109/JOE.2016.2593865

    Article  Google Scholar 

  12. A. A. Lunkov and M. A. Shermeneva, “Mode coupling due to a local inhomogeneity in a shallow-water acoustic waveguide in a broad frequency band,” Acoust. Phys. 68 (5), 467–475 (2022). https://doi.org/10.1134/S1063771022050062

    Article  ADS  Google Scholar 

  13. A. I. Belov and G. N. Kuznetsov, “Estimating the acoustic parameters of a model of a shallow-water seafloor using a priori geological and geophysical information and the Wigner transform,” Acoust. Phys. 60 (2), 191–196 (2014). https://doi.org/10.1134/S1063771014010047

    Article  ADS  Google Scholar 

  14. J. Bonnel, A. Thode, D. Wright, and R. Chapman, “Nonlinear time-warping made simple: A step-by-step tutorial on underwater acoustic modal separation with a single hydrophone,” J. Acoust. Soc. Am. 147 (3), 1897–1926 (2020). https://doi.org/10.1121/10.0000937

    Article  ADS  Google Scholar 

  15. S. N. Sergeev, A. S. Shurup, O. A. Godin, A. I. Vedenev, V. V. Goncharov, P. Yu. Mukhanov, N. A. Zabotin, and M. G. Brown, “Separation of acoustic modes in the Florida Straits using noise interferometry,” Acoust. Phys. 63 (1), 76–85 (2017). https://doi.org/10.1134/S1063771016060154

    Article  ADS  Google Scholar 

  16. M. Yu. Fershalov, P. S. Petrov, D. S. Manulchev, and A. D. Zaharenko, “A method for single-hydrophone geoacoustic inversion: Application to a waveguide with inhomogeneous bottom relief,” Underwater Invest. Rob., No. 1 (35), 51–59 (2021). https://doi.org/10.37102/1992-4429_2021_35_01_05

  17. M. Yarina and B. Katsnelson, “Mode selection of wideband acoustic signals using time-frequency (warping) analysis for single hydrophone. Comparison with array filtering in variable medium,” Proc. 2019 IEEE Int. Conf. on Microwaves, Antennas, Communications and Electronic Systems (COMCAS), Tel-Aviv, Israel, November 4–6, 2019 (IEEE, 2020), pp. 1–4. https://doi.org/10.1109/COMCAS44984.2019.8958259

  18. J. Bonnel, S. Caporale, and A. Thode, “Waveguide mode amplitude estimation using warping and phase compensation,” J. Acoust. Soc. Am. 141 (3), 2243–2255 (2017). https://doi.org/10.1121/1.4979057

    Article  ADS  Google Scholar 

  19. M. D. Collins and E. K. Westwood, “A higher-order energy-conserving parabolic equation for range dependent ocean depth, sound speed, and density,” J. Acoust. Soc. Am. 89 (3), 1068–1075 (1991). https://doi.org/10.1121/1.400526

    Article  ADS  Google Scholar 

  20. O. A. Godin, “Reciprocity and energy conservation within the parabolic approximation,” Wave Motion. 29 (2), 175–194 (1999). https://doi.org/10.1016/S0165-2125(98)00025-0

    Article  ADS  MathSciNet  Google Scholar 

  21. G. A. Grachev, “Theory of acoustic field invariants in layered waveguides,” Acoust. Phys. 39 (1), 33–35 (1993). https://elibrary.ru/item.asp?id=25627372

    ADS  Google Scholar 

  22. Y. Le Gall and J. Bonnel, “Passive estimation of the waveguide invariant per pair of modes,” J. Acoust. Soc. Am. 134 (2), EL230–EL236 (2013). https://doi.org/10.1121/1.4813846

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, grant no. 22-72-10121; https://rscf.ru/en/project/22-72-10121/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Shermeneva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Sin’kov

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lunkov, A.A., Shermeneva, M.A. Application of Warping Transform for the Analysis of the Acoustic Mode Coupling due to a Local Inhomogeneity in Shallow Water. Phys. Wave Phen. 31, 396–405 (2023). https://doi.org/10.3103/S1541308X23060067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X23060067

Keywords:

Navigation