Skip to main content
Log in

Phase Invariants of Vector–Scalar Fields Excited in the Shallow Sea by Multipole Sources

  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript


The concept of a phase invariant (PI), introduced in our previous studies, is used to describe the sound-field phase distribution in an underwater waveguide in the distance–frequency plane. This concept is similar to the classical waveguide Chuprov invariant (ChI), which specifies the slopes of constant-field intensity lines in the same plane. The PIs of vector–scalar fields excited by multipole sources are investigated for the first time in this paper. It is shown that, as well as in the case of a monopole source, PI is a stable characteristic of a sound field. It is demonstrated by numerical simulation that the PI value in shallow water barely depends on the source directional pattern, the path length, the frequency of emitted signal, and the waveguide characteristics. Significant deviations of PI from its basic value (–1) are observed only in the vicinity of interference minima (in the phase-dislocation zones).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others


  1. S. D. Chuprov, “Interference structure of the sound field in a layered ocean,” in Acoustics of Ocean: Contemporary State, Ed. by L. M. Brekhovskikh and I. A. Andreeva (Nauka, Moscow, 1982), pp. 71–91 [in Russian].

    Google Scholar 

  2. G. A. Grachev, “On theory of acoustic field invariants in layered waveguides,” Akust. Zh. 39 (1), 67–71 (1993) [in Russian].

  3. E. F. Orlov and G. A. Sharonov, Interference of Sound Waves in the Ocean (Dal’nauka, Vladivostok, 1998) [in Russian].

    Google Scholar 

  4. Z. Zhao, J. Wu, and E. Shang, “How the thermocline affects the value of the waveguide invariant in a shallow-water waveguide,” J. Acoust. Soc. Am. 138 (1), 223–231 (2015).

    Article  ADS  Google Scholar 

  5. M. Badiey, V. M. Kuz’kin, G. A. Lyakhov, S. A. Pereselkov, D. Yu. Prosovetskiy, and S. A. Tkachenko, “Intense internal waves and their manifestation in the interference patterns of received signals on oceanic shelf. Part II,” Phys. Wave Phenom. 27 (4), 313–319 (2019).

    Article  ADS  Google Scholar 

  6. G. L. D’Spain and W. A. Kuperman, “Application of waveguide invariants to analysis of spectrograms from shallow water environments that vary in range and azimuth,” J. Acoust. Soc. Am. 106 (5), 2454–2468 (1999).

    Article  ADS  Google Scholar 

  7. G. N. Kuznetsov and A. N. Stepanov, “Equiphase lines of sound pressures in the frequency-spatial domain of a hydroacoustic field,” Dokl. Phys. 66 (5), 143–146 (2021).

    Article  ADS  Google Scholar 

  8. G. N. Kuznetsov and A. N. Stepanov, “Interference and phase invariants of sound fields,” Phys. Wave Phenom. 29 (3), 285–292 (2021).

    Article  ADS  Google Scholar 

  9. G. V. Kenigsberger, V. G. Kolin’ko, and G. N. Kuznetsov, USSR Inventor’s Certificate no. 286264 (Priority of the Invention Dated 16.06.1987, Registered 02.01.1989).

  10. K. L. Cockrell and H. Schmidt, “Robust passive range estimation using the waveguide invariant,” J. Acoust. Soc. Am. 127 (5), 2780–2789 (2010).

    Article  ADS  Google Scholar 

  11. G. N. Kuznetsov, V. M. Kuz’kin, S. A. Pereselkov, and D. Yu. Prosovetskiy, “Interference immunity of an interferometric method of estimating the velocity of a sound source in shallow water,” Acoust. Phys. 62 (5), 559–574 (2016).

    Article  ADS  Google Scholar 

  12. G. N. Kuznetsov, V. M. Kuz’kin, and S. A. Pereselkov, “Spectrogram and localization of a sound source in shallow water,” Acoust. Phys. 63 (4), 449–461 (2017).

    Article  ADS  Google Scholar 

  13. L. M. Brekhovskikh, Waves in Layered Media (Academic, New York, 1960).

    Google Scholar 

  14. L. M. Brekhovskikh and Yu. P. Lysanov, Theoretical Foundations of Ocean Acoustics (Nauka, Moscow, 2007) [in Russian].

    Google Scholar 

  15. G. N. Kuznetsov and A. N. Stepanov, Vector-Scalar Fields of Multipole Hydroacoustic Sources Equivalent to the Noise Emission of Marine Objects (Buki-Vedi, Moscow, 2022) [in Russian].

    Google Scholar 

  16. V. A. Baranov and V. S. Grigor’ev, “Water layer as a measuring instrument,” Akust. Zh. 28 (5), 588–596 (1982) [in Russian].

  17. V. A. Zhuravlev, I. K. Kobozev, and Yu. A. Kravtsov, “Detecting dislocations by measuring the energy flux of an acoustic field,” J. Exp. Theor. Phys. 77 (5), 808–814 (1993).

    ADS  MathSciNet  Google Scholar 

  18. V. A. Eliseevnin and Yu. I. Tuzhilkin, “Acoustic power flux in a waveguide,” Acoust. Phys. 47 (6), 688–694 (2001).

    Article  ADS  Google Scholar 

  19. V. A. Zhuravlev, I. K. Kobozev, Yu. A. Kravtsov, V. G. Petnikov, V. A. Popov, and A. Yu. Shmelev, “Dislocation tomography of the ocean: New method for acoustic diagnostics,” Akust. Zh. 39 (4), 764–765 (1993) [in Russian].

  20. G. N. Kuznetsov and A. N. Stepanov, “Approximate analytic representations of laws of attenuation in vector-scalar fields of multipole sources in a Pekeris waveguide,” Acoust. Phys. 63 (6), 660–672 (2017).

    Article  ADS  Google Scholar 

Download references


This study was supported by the program “Acoustics of Shallow Water, Nonlinear Acoustic Diagnostics, Nonlinear Dynamics of Waves” (State registration No. AAAA-A18-118021390174-1).

Author information

Authors and Affiliations


Corresponding author

Correspondence to G. N. Kuznetsov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Sin’kov

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, G.N., Stepanov, A.N. Phase Invariants of Vector–Scalar Fields Excited in the Shallow Sea by Multipole Sources. Phys. Wave Phen. 31, 371–382 (2023).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: