Skip to main content
Log in

Evaluation of Cr2+ Ions Absorption Cross-Section in Zn1–xMnxSe Solid Solutions by Nonlinear Transmission Measurements

  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript


The absorption cross-section of Cr2+ ions in a range of cubic Zn1–xMnxSe (x = 0–0.3) solid solutions was determined using nonlinear transmission measurements. The maximum absorption cross-section of about 1.04 × 10–18 cm2 was determined and shown to be practically independent of the Mn content (x) in the solid solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others


  1. L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: Spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32 (6), 885–895 (1996).

    Article  ADS  Google Scholar 

  2. T. J. Carrig, “Transition-metal-doped chalcogenide lasers,” J. Electron. Mater. 31, 759–769 (2002).

    Article  ADS  Google Scholar 

  3. Solid-State Mid-Infrared Laser Sources, Ed. by I. T. Sorokina and K. L. Vodopyanov (Springer-Verlag, Berlin–Heidelberg, 2003).

  4. U. Hommerich, X. Wu, V. R. Davis, S. B. Trivedi, K. Grasza, R. J. Chen, and S. Kutcher, “Demonstration of room-temperature laser action at 2.5 μm from Cr2+:Cd0.85Mn0.15Te,” Opt. Lett. 22 (15), 1180–1182 (1997).

    Article  ADS  Google Scholar 

  5. M. Mond, D. Albrecht, E. Heumann, G. Huber, S. Kück, V. I. Levchenko, V. N. Yakimovich, V. G. Shcherbitsky, V. E. Kisel, N. V. Kuleshov, M. Rattunde, J. Schmitz, R. Kiefer, and J. Wagner, “1.9-μm and 2.0-μm laser diode pumping of Cr2+:ZnSe and Cr2+:CdMnTe,” Opt. Lett. 27 (12), 1034–1036 (2002).

    Article  ADS  Google Scholar 

  6. U. Hömmerich, J. T. Seo, A. Bluiett, M. Turner, D. Temple, S. B. Trivedi, H. Zong, S. W. Kutcher, C. C. Wang, R. J. Chen, and B. Schumm, “Mid-infrared laser development based on transition metal doped cadmium manganese telluride,” J. Lumin. 8789, 1143–1145 (2000).

  7. A. G. Bluiett, U. Hömmerich, R. T. Shah, S. B. Trivedi, S. W. Kutcher, and C. C. Wang, “Observation of lasing from Cr2+:CdTe and compositional effects in Cr2+-doped II-VI semiconductors,” J. Electron. Mater.  31, 806–810 (2002).

    Article  ADS  Google Scholar 

  8. V. I. Kozlovsky, Y. V. Korostelin, Y. P. Podmar’kov, Y. K. Skasyrsky, and M. P. Frolov, “Middle infrared Fe2+:ZnS, Fe2+:ZnSe and Cr2+:CdSe lasers: New results, J. Phys.: Conf. Ser. 740, 012006 (2016).

    Article  Google Scholar 

  9. M. E. Doroshenko, H. Jelínková, P. Koranda, J. Šulc, T. T. Basiev, V. V. Osiko, V. K. Komar, A. S. Gerasimenko, V. M. Puzikov, V. V. Badikov, and D. V. Badikov, “Tunable mid-infrared laser properties of Cr2+:ZnMgSe and Fe2+:ZnSe crystals,” Laser Phys. Lett. 7 (1), 38–45 (2010).

    Article  ADS  Google Scholar 

  10. M. E. Doroshenko, V. V. Osiko, H. Jelínková, M. Jelínek, M. Němec, J. Šulc, N. O. Kovalenko, A. S. Gerasimenko, and V. M. Puzikov, “Spectroscopic and laser properties of Cr2+ ions in Zn1–xMgxSe solid solutions,” Opt. Mater. 47, 185–189 (2015).

    Article  ADS  Google Scholar 

  11. A. Říha, M. E. Doroshenko, H. Jelínková, M. Němec, M. Jelínek, J. Šulc, D. Vyhlídal, N. O. Kovalenko, and I. S. Terzin, “2.3- and 4.4-μm lasing in Cr, Fe:Zn1–xMnxSe (x = 0.3) single crystal pumped by Q-switched Er:YLF laser at 1.73 μm,” Phys. Wave Phenom. 28 (3), 231–235 (2020).

    Article  ADS  Google Scholar 

  12. M. E. Doroshenko, H. Jelínková, V. V. Osiko, M. Jelínek, D. Vyhlídal, J. Šulc, M. Němec, N. O. Kovalenko, and A. S. Gerasimenko, “Fe:ZnMnSe laser active material at 78–300 K: Spectroscopic properties and laser generation at 4.2–5.0 μm,” J. Lumin. 192, 1300–1307 (2017).

    Article  Google Scholar 

  13. N. O. Kovalenko, S. V. Naydenov, I. M. Pritula, and S. N. Galkin, “II sulfides and II selenides: Growth, Properties, and Modern Applications,” in Single Crystals of Electronic Materials: Growth and Properties (Elsevier, 2019), pp. 303–330.

  14. R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr., Sect. A 32 (5), 751–767 (1976).

    Article  ADS  Google Scholar 

  15. J. M. Khosrofian and B. A. Garetz, “Measurement of a Gaussian laser beam diameter through the direct inversion of knife-edge data,” Appl. Opt. 22 (21), 3406–3410 (1983).

    Article  ADS  Google Scholar 

  16. M. A. de Araújo, R. Silva, E. de Lima, D. P. Pereira, and P. C. de Oliveira, “Measurement of Gaussian laser beam radius using the knife-edge technique: Improvement on data analysis,” Appl. Opt. 48 (2), 393–396 (2009).

    Article  ADS  Google Scholar 

  17. W. Rudolph and H. Weber, “Analysis of saturable absorbers, interacting with Gaussian pulses,” Opt. Commun. 34 (3), 491–496 (1980).

    Article  ADS  Google Scholar 

  18. I. T. Sorokina, “Broadband mid-infrared solid-state lasers,” in Mid-Infrared Coherent Sources and Applications. NATO Science for Peace and Security Series B: Physics and Biophysics, Ed. by M. Ebrahim-Zadeh and I. T. Sorokina (Springer-Verlag, Dordrecht, 2008), pp. 225–260.

  19. S. B. Mirov, V. V. Fedorov, D. Martyshkin, I. S. Moskalev, M. Mirov, and S. Vasilyev, “Progress in mid-IR lasers based on Cr and Fe-doped II–VI chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21 (1), 1601719 (2015).

    Article  Google Scholar 

  20. M. Hetterich, B. Daniel, C. Klingshirn, P. Pfundstein, D. Litvinov, D. Gerthsen, K. Eichhorn, and D. Spemann, “Lattice parameter and elastic constants of cubic Zn1–xMnxSe epilayers grown by molecular-beam epitaxy,” Phys. Status Solidi C 1 (4), 649–652 (2004).

    Article  ADS  Google Scholar 

  21. D. R. Yoder-Short, U. Debska, and J. K. Furdyna, “Lattice parameters of Zn1–xMnxSe and tetrahedral bond lengths in \({\text{A}}_{{1 - x}}^{{{\text{II}}}}{\text{M}}{{{\text{n}}}_{x}}{{{\text{B}}}^{{{\text{VI}}}}}\) alloys,” J. Appl. Phys. 58, 4056–4060 (1985).

    Article  ADS  Google Scholar 

Download references


The study was supported by the Russian Science Foundation, grant no. 23-22-00236.

Author information

Authors and Affiliations


Corresponding author

Correspondence to K. A. Pierpoint.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doroshenko, M.E., Pierpoint, K.A., Říha, A. et al. Evaluation of Cr2+ Ions Absorption Cross-Section in Zn1–xMnxSe Solid Solutions by Nonlinear Transmission Measurements. Phys. Wave Phen. 31, 412–417 (2023).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: