Skip to main content
Log in

A Novel Method for Measuring the Concentration of Liquids using Helical Long-Period Fiber Gratings

  • WAVE STRUCTURES AND THEIR DIAGNOSTICS
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

This research involves a novel liquid concentration measurement of helical long-period fiber grating (H-LPFG) by dual-wavelength difference. The grating with a period of 782 μm is spirally processed via the commercial welding machine. The resonant peak appears around 1520 nm. Coupled mode theory is used to study the transmission strength as a function of liquid concentration. Theoretically, the transmission intensity depends only on the liquid concentration. Then, we experimentally researched the relationship between the transmission intensity and the concentration as a function of the wavelength at 1495 and 1518 nm. Transmission intensity at these two places is e-exponential with respect to the liquid concentration. Due to the transmission intensity measurement concentration is influenced by the fluctuation of the light source, since the fluctuation of the light source will affect the transmission intensity. Finally, a demodulation system for H-LPFG is proposed using only filters and light detector. This allows a new way to develop a high-precision, low-cost, high-potential liquid concentration sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. I. Rea, M. Iodice, G. Coppola, I. Rendina, A. Marino, and L. De Stefano, “A porous silicon-based Bragg grating waveguide sensor for chemical monitoring,” Sens. Actuators, B 139 (1), 39–43 (2009). https://doi.org/10.1016/j.snb.2008.08.035

    Article  Google Scholar 

  2. J. H. Chong, P. Shum, H. Haryono, A. Yohana, M. K. Rao, C. Lu, and Y. Zhu, “Measurements of refractive index sensitivity using long-period grating refractometer,” Opt. Commun. 229 (1–6), 65–69 (2004). https://doi.org/10.1016/j.optcom.2003.10.044

  3. A. Deep, U. Tiwari, P. Kumar, V. Mishra, S. C. Jain, N. Singh, P. Kapur, and L. M. Bharadwaj, “Immobilization of enzyme on long period grating fibers for sensitive glucose detection,” Biosens. Bioelectron. 33 (1), 190–195 (2012). https://doi.org/10.1016/j.bios.2011.12.051

    Article  Google Scholar 

  4. X. Sun, N. Li, B. Zhou, W. Zhao, L. Liu, C. Huang, L. Ma, and A. R. Kost, “Non-enzymatic glucose detection based on phenylboronic acid modified optical fibers,” Opt. Commun. 416, 32–35 (2018). https://doi.org/10.1016/j.optcom.2018.01.064

    Article  ADS  Google Scholar 

  5. J.-L. Tang and J.-N. Wang, “Measurement of chloride-ion concentration with long-period grating technology,” Smart Mater. Struct. 16 (3), 665–672 (2007). https://doi.org/10.1088/0964-1726/16/3/013

    Article  ADS  Google Scholar 

  6. H. Liu, Z. Zhu, Y. Zheng, B. Liu, and F. Xiao, “Experimental study on an FBG strain sensor,” Opt. Fiber Technol. 40, 144–151 (2018). https://doi.org/10.1016/j.yofte.2017.09.003

    Article  ADS  Google Scholar 

  7. A. D. Pereira, O. Frazao, and L. J. Santos, “Fiber Bragg grating sensing system for simultaneous measurement of salinity and temperature,” Opt. Eng. 43 (2), 299–304 (2004). https://doi.org/10.1117/1.1637903

    Article  ADS  Google Scholar 

  8. W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005). https://doi.org/10.1063/1.1904716

    Article  ADS  Google Scholar 

  9. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Redogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14 (1), 58–65 (1996). https://doi.org/10.1109/50.476137

    Article  ADS  Google Scholar 

  10. J. Zhou, “A non-orthogonal coupled mode theory for super-modes inside multi-core fibers,” Opt. Express 22 (9), 10815–10824 (2014). https://doi.org/10.1364/OE.22.010815

    Article  ADS  Google Scholar 

  11. Z. Gu and Y. Xu, “Dual-peak resonance and transmission spectrum in coated long-period fiber grating,” Acta Opt. Sin. 28 (2), 219–225 (2008). https://doi.org/10.3788/AOS20082802.0219

    Article  Google Scholar 

  12. C. R. Zamarreño, P. Sanchez, M. Hernaez, I. Del Villar, C. Fernandez-Valdivielso, I. R. Matias, and F. J. Arregui, “Dual-peak resonance-based optical fiber refractometers,” IEEE Photonics Technol. Lett. 22 (24), 1778–1780 (2010). https://doi.org/10.1109/LPT.2010.2082517

    Article  ADS  Google Scholar 

  13. J.-L. Tang, S.-F. Cheng, W.-T. Hsu, T.-Y. Chiang, and L.-K. Chau, “Fiber-optic biochemical sensing with a colloidal gold-modified long period fiber grating,” Sens. Actuators, B 119 (1), 105–109 (2006). https://doi.org/10.1016/j.snb.2005.12.003

    Article  Google Scholar 

  14. A. K. Ahuja, P. E. Steinvurzel, B. J. Eggleton, and J. A. Rogers, “Tunable single phase-shifted and superstructure gratings using microfabricated on-fiber thin film heaters,” Opt. Commun. 184 (1–4), 119–125 (2000). https://doi.org/10.1016/S0030-4018(00)00923-8

  15. L. R. Chen, “Phase-shifted long-period gratings by refractive index-shifting,” Opt. Commun. 200 (1–6), 187–191 (2001). https://doi.org/10.1016/S0030-4018(01)01658-3

  16. A. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, P. J. Lemaire, N. S. Bergano, and C. R. Davidson, “Long-period fiber-grating-based gain equalizers,” Opt. Lett. 21 (5), 336–338 (1996). https://doi.org/10.1364/OL.21.000336

    Article  ADS  Google Scholar 

  17. S. Oh, K. R. Lee, U.-C. Paek, and Y. Chung, “Fabrication of helical long-period fiber gratings by use of a CO2 laser,” Opt. Lett. 29 (13), 1464–1466 (2004). https://doi.org/10.1364/OL.29.001464

    Article  ADS  Google Scholar 

  18. K. Ren, L. Ren, J. Liang, X. Kong, H. Ju, Y. Xu, and Z. Wu, “Online fabrication scheme of helical long-period fiber grating for liquid-level sensing,” Appl. Opt. 55 (34), 9675–9679 (2016). https://doi.org/10.1364/AO.55.009675

    Article  ADS  Google Scholar 

  19. C. Fu, Y. Wang, Z. Bai, S. Liu, Y. Zhang, and Z. Li, “Twist-direction-dependent orbital angular momentum generator based on inflation-assisted helical photonic crystal fiber,” Opt. Lett. 44 (2), 459–462 (2019). https://doi.org/10.1364/OL.44.000459

    Article  ADS  Google Scholar 

  20. C. Fu, Y. Wang, S. Liu, Z. Bai, J. Tang, L. Shao, and X. Liu, “Transverse-load, strain, temperature, and torsion sensors based on a helical photonic crystal fiber,” Opt. Lett. 44 (8), 1984–1987 (2019). https://doi.org/10.1364/OL.44.001984

    Article  ADS  Google Scholar 

  21. C. D. Poole, H. M. Presby, and J. P. Meester, “Two-mode fibre spatial-mode converter using periodic core deformation,” Electron. Lett. 30 (17), 1437–1438 (1994). https://doi.org/10.1049/el:19940948

    Article  ADS  Google Scholar 

  22. B. Sun, W. Wei, C. R. Liao, L. Zhang, Z. Zhang, M.‑Y. Chen, and Y. Wang, “Automatic arc discharge-induced helical long period fiber gratings and its sensing applications,” IEEE Photonics Technol. Lett. 29 (11), 873–876 (2017). https://doi.org/10.1109/LPT.2017.2693361

    Article  ADS  Google Scholar 

  23. Y. Bai, Z. He, J. Bai, and S. Dang, “Axial strain measurement based on dual-wavelength ratio for helical long-period grating,” IEEE Sens. Lett. 4 (11), 1500803 (2020). https://doi.org/10.1109/LSENS.2020.3035519

    Article  Google Scholar 

  24. C. Fu, S. Liu, Y. Wang, Z. Bai, J. He, C. Liao, Y. Zhang, F. Zhang, B. Yu, S. Gao, Z. Li, and Y. Wang, “High-order orbital angular momentum mode generator based on twisted photonic crystal fiber,” Opt. Lett. 43 (8), 1786–1789 (2018). https://doi.org/10.1364/OL.43.001786

    Article  ADS  Google Scholar 

  25. G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. St. J. Russell, “Excitation of orbital angular momentum resonances in helically twisted photonic crystal fiber,” Science 337 (6093), 446–449 (2012). https://doi.org/10.1126/science.1223824

    Article  ADS  Google Scholar 

  26. Q. Huang, Y. Yu, Z. Ou, X. Chen, J. Wang, P. Yan, and C. Du, “Refractive index and strain sensitivities of a long period fiber grating,” Photonic Sens. 4 (1), 92–96 (2014). https://doi.org/10.1007/s13320-013-0142-3

    Article  ADS  Google Scholar 

  27. O. V. Ivanov, “Propagation and coupling of hybrid modes in twisted fibers,” J. Opt. Soc. Am. A 22 (4), 716–723 (2005). https://doi.org/10.1364/JOSAA.22.000716

    Article  ADS  MathSciNet  Google Scholar 

  28. G. Shvets, S. Trendafilov, V. I. Kopp, D. Neugroschl, and A. Z. Genack, “Polarization properties of chiral fiber gratings,” J. Opt. A: Pure Appl. Opt. 11 (7), 074007 (2009). https://doi.org/10.1088/1464-4258/11/7/074007

    Article  ADS  Google Scholar 

  29. M. Napiorkowski and W. Urbanczyk, “Role of symmetry in mode coupling in twisted microstructured optical fibers,” Opt. Lett. 43 (3), 395–398 (2018). https://doi.org/10.1364/OL.43.000395

    Article  ADS  Google Scholar 

  30. U. S. Raikar, A. S. Lalasangi, V. K. Kulkarni, and J. F. Akki, “Concentration and refractive index sensor for methanol using short period grating fiber,” Optik 122 (2), 89–91 (2011). https://doi.org/10.1016/j.ijleo.2009.11.012

    Article  ADS  Google Scholar 

  31. Y. Bai, Z. He, and S. Dang, “Twist measurement based on dual-wavelength ratio for helical long-period grating,” Indian J. Phys. 96 (8), 2525–2529 (2022). https://doi.org/10.1007/s12648-021-02177-z

    Article  ADS  Google Scholar 

  32. Y. Tang, J. Huang, K. Lv, L. Zhang, and Y. Bai, “Theoretical study on the relationship between transmission intensity and tensile force of helical long-period fiber grating at fixed wavelength,” Bull. Lebedev Phys. Inst. 49 (7), 214–220 (2022). https://doi.org/10.3103/S1068335622070089

    Article  ADS  Google Scholar 

  33. Y. Tang, H. Zhang, L. Zhang, X. G. Yu, and Y. F. Bai, “Strain measurement based on fixed wavelength transmission of tapered long-period fiber grating,” Opt. Appl. 52 (4), 511–519 (2022). https://doi.org/10.37190/oa220403

    Article  Google Scholar 

  34. X. Guo, F. Liu, and W. Bi, “Analysis of photonic crystal fiber sensor character,” Optoelectron. Lett. 3 (3), 199–202 (2007). https://doi.org/10.1007/s11801-007-6150-z

    Article  ADS  Google Scholar 

  35. Y.-L. Yeh, C. C. Wang, M.-J. Jang, and Y.-P. Lin, “A high-precision measurement technique for evaluating alcohol concentrations using an optical metrology system based on a position sensing detector,” Opt. Lasers Eng. 47 (5), 599–603 (2009). https://doi.org/10.1016/j.optlaseng.2008.09.005

    Article  Google Scholar 

  36. Q.-S. Li, X.-L. Zhang, Y.-H. Ma, J.-H. Yang, L. Cai, Q.-A. Liu, and J.-G. Shi, “Sodium chloride concentration sensor based on long period fiber grating with dual resonant peak,” J. Phys.: Conf. Ser. 1065 (25), 252021 (2018). https://doi.org/10.1088/1742-6596/1065/25/252021

    Article  Google Scholar 

Download references

Funding

The work is support by the Science and Technology Research Program of Chongqing Education Commission (KJQN202201403), by the University Innovation Research Group of Shale Gas Optical Fiber Intelligent Sensing Technology (CXQT20027), by Co-operative Projects between Undergraduate Universities in Chongqing and Institutes affiliated with Chinese Academy of Sciences (HZ2021014), and by “New Generation of Information Technology Innovation Project” sponsored by China University Innovation Fund (2021ITA04001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunfeng Bai.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

DATA AVAILABILITY

Data underlying the results presented in this paper are not publicly available at this time, but may be obtained from the authors upon reasonable request.

Additional information

The text was submitted by the authors in English.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Ran, Q., Lian, Y. et al. A Novel Method for Measuring the Concentration of Liquids using Helical Long-Period Fiber Gratings. Phys. Wave Phen. 31, 363–370 (2023). https://doi.org/10.3103/S1541308X23050102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X23050102

Keyword:

Navigation