Skip to main content
Log in

Fabry–Pérot Resonances in Planar Metal–Insulator–Metal Structures for Optical Data Processing: A Review

  • OPTICAL DATA PROCESSING
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

The design of resonant planar metal-insulator-metal (MIM) structures offers promising applications in the optical image processing field, especially for developing efficient and ultrafast systems for optical computing and edge detection. The present work extends approaches based on electromagnetic theory and coupled-mode theory to describe nature and characteristics of the resonances in absorptive interference structures. Obtained analytical expressions based on Fano representation relate the resonance properties of the interference structures with their geometrical and optical parameters. This approach was efficiently employed to describe optical properties of the MIM structures and optimize their geometrical parameters for applications in optical filtration and image processing. The review of recent developments for all-optical edge detection both in reflection and transmission highlights various challenges encountered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.

Similar content being viewed by others

REFERENCES

  1. C. Fabry and A. Pérot, “Théorie et applications d’une nouvelle méthode de spectroscopie interférentielle,” Ann. Chim. Phys. 16 (7), 115–144 (1899).

    MATH  Google Scholar 

  2. J. M. Vaughan, The Fabry–Perot Interferometer: History, Theory, Practice and Applications (Taylor & Francis, New York–London, 1989).

  3. O. Svelto, Principles of Lasers, 4th ed. (Plenum, 1998).

    Book  Google Scholar 

  4. S. Refki, S. Hayashi, H. Ishitobi, D. V. Nesterenko, A. Rahmouni, Y. Inouye, and Z. Sekkat, “Resolution enhancement of plasmonic sensors by metal-insulator-metal structures,” Ann. Phys. 530 (4), 1700411 (2018). https://doi.org/10.1002/andp.201700411

    Article  MathSciNet  Google Scholar 

  5. S. Refki, S. Hayashi, A. Rahmouni, D. V. Nesterenko, and Z. Sekkat, “Anticrossing behavior of surface plasmon polariton dispersions in metal-insulator-metal structures,” Plasmonics 11 (2), 433–440 (2016). https://doi.org/10.1007/s11468-015-0047-7

    Article  Google Scholar 

  6. A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343 (6167), 160–163 (2014). https://doi.org/10.1126/science.1242818

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. D. R. Solli and B. Jalali, “Analog optical computing,” Nat. Photonics 9 (11), 704–706 (2015). https://doi.org/10.1038/nphoton.2015.208

    Article  ADS  Google Scholar 

  8. J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83 (14), 2845–2848 (1999). https://doi.org/10.1103/PhysRevLett.83.2845

    Article  ADS  Google Scholar 

  9. F. J. García-Vidal and L. Martín-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66 (15), 155412 (2002). https://doi.org/10.1103/PhysRevB.66.155412

    Article  ADS  Google Scholar 

  10. V. I. Belotelov, A. N. Kalish, A. K. Zvezdin, A. V. Gopal, and A. S. Vengurlekar, “Fabry–Perot plasmonic structures for nanophotonics,” J. Opt. Soc. Am. B 29 (3), 294–299 (2012). https://doi.org/10.1364/JOSAB.29.000294

    Article  ADS  Google Scholar 

  11. Ph. Prêtre, L.-M. Wu, R. A. Hill, and A. Knoesen, “Characterization of electro-optic polymer films by use of decal-deposited reflection Fabry–Perot microcavities,” J. Opt. Soc. Am. B 15 (1), 379–392 (1998). https://doi.org/10.1364/JOSAB.15.000379

    Article  ADS  Google Scholar 

  12. N. Ismail, C. C. Kores, D. Geskus, and M. Pollnau, “Fabry–Pérot resonator: Spectral line shapes, generic and related Airy distributions, linewidths, finesses, and performance at low or frequency-dependent reflectivity,” Opt. Express 24 (15), 16366–16389 (2016). https://doi.org/10.1364/OE.24.016366

    Article  ADS  Google Scholar 

  13. D. V. Nesterenko, S. Hayashi, and Z. Sekkat, “Asymmetric surface plasmon resonances revisited as Fano resonances,” Phys. Rev. B 97 (23), 235437 (2018). https://doi.org/10.1103/PhysRevB.97.235437

    Article  ADS  Google Scholar 

  14. D. V. Nesterenko, R. A. Pavelkin, and S. Hayashi, “Estimation of resonance characteristics of single-layer surface-plasmon sensors in liquid solutions using Fano’s approximation in the visible and infrared regions,” Comput. Opt. 43 (4), 596–604 (2019). https://doi.org/10.18287/2412-6179-2019-43-4-596-604

    Article  ADS  Google Scholar 

  15. D. V. Nesterenko, R. Pavelkin, S. Hayashi, Z. Sekkat, and V. Soifer, “Fano approximation as a fast and effective way for estimating resonance characteristics of surface plasmon structures,” Plasmonics 16, 1001–1011 (2021). https://doi.org/10.1007/s11468-020-01364-8

    Article  Google Scholar 

  16. D. V. Nesterenko, S. Hayashi, and V. Soifer, “Ab initio spatial coupled-mode theory of Fano resonances in optical responses of multilayer interference resonators,” Phys. Rev. A 106 (2), 023507 (2022). https://doi.org/10.1103/PhysRevA.106.023507

    Article  ADS  MathSciNet  Google Scholar 

  17. D. V. Nesterenko, “Resonance characteristics of transmissive optical filters based on metal/dielectric/metal structures,” Comput. Opt. 44 (2), 219–228 (2020). https://doi.org/10.18287/2412-6179-CO-681

    Article  ADS  Google Scholar 

  18. S. Shu, Z. Li, and Y. Y. Li, “Triple-layer Fabry–Perot absorber with near-perfect absorption in visible and near-infrared regime,” Opt. Express 21 (21), 25307–25315 (2013). https://doi.org/10.1364/OE.21.025307

    Article  ADS  Google Scholar 

  19. M. Yan, “Metal–insulator–metal light absorber: A continuous structure,” J. Opt. 15 (2), 025006 (2013). https://doi.org/10.1088/2040-8978/15/2/025006

    Article  ADS  Google Scholar 

  20. Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8 (4), 495–520 (2014). https://doi.org/10.1002/lpor.201400026

    Article  ADS  Google Scholar 

  21. C. Ng, L. Wesemann, E. Panchenko, J. Song, T. J. Davis, A. Roberts, and D. E. Gómez, “Plasmonic near-complete optical absorption and its applications,” Adv. Opt. Mater. 7 (14), 1801660 (2019). https://doi.org/10.1002/adom.201801660

    Article  Google Scholar 

  22. Z. Li, S. Butun, and K. Aydin, “Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films,” ACS Photonics 2 (2), 183–188 (2015). https://doi.org/10.1021/ph500410u

    Article  Google Scholar 

  23. M. Seo, J. Kim, H. Oh, M. Kim, I. U. Baek, K.-D. Choi, J. Y. Byun, and M. Lee, “Printing of highly vivid structural colors on metal substrates with a metal-dielectric double layer,” Adv. Opt. Mater. 7 (13), 1900196 (2019). https://doi.org/10.1002/adom.201900196

    Article  Google Scholar 

  24. J. Tan, Z. Wu, K. Xu, Y. Meng, G. Jin, L. Wang, and Y. Wang, “Numerical study of an Au-ZnO-Al perfect absorber for a color filter with a high quality factor,” Plasmonics 15 (1), 293–299 (2020). https://doi.org/10.1007/s11468-019-01047-z

    Article  Google Scholar 

  25. H. Deng, Z. Li, L. Stan, D. Rosenmann, D. Czaplewski, J. Gao, and X. Yang, “Broadband perfect absorber based on one ultrathin layer of refractory metal,” Opt. Lett. 40 (11), 2592–2595 (2015). https://doi.org/10.1364/OL.40.002592

    Article  ADS  Google Scholar 

  26. M. Chirumamilla, A. S. Roberts, F. Ding, D. Wang, P. K. Kristensen, S. I. Bozhevolnyi, and K. Pedersen, “Multilayer tungsten-alumina-based broadband light absorbers for high-temperature applications,” Opt. Mater. Express 6 (8), 2704–2714 (2016). https://doi.org/10.1364/OME.6.002704

    Article  ADS  Google Scholar 

  27. S. Abedini Dereshgi, A. Ghobadi, H. Hajian, B. Butun, and E. Ozbay, “Ultra-broadband, lithography-free, and large-scale compatible perfect absorbers: The optimum choice of metal layers in metal-insulator multilayer stacks,” Sci. Rep. 7 (1), 14872 (2017). https://doi.org/10.1038/s41598-017-13837-8

    Article  ADS  Google Scholar 

  28. A. Ghobadi, H. Hajian, M. Gokbayrak, B. Butun, and E. Ozbay, “Bismuth-based metamaterials: From narrowband reflective color filter to extremely broadband near perfect absorber,” Nanophotonics 8 (5), 823–832 (2019). https://doi.org/10.1515/nanoph-2018-0217

    Article  Google Scholar 

  29. N. Priscilla, D. Smith, E. Della Gaspera, J. Song, L. Wesemann, T. James, and A. Roberts, “Optical Janus effect in large area multilayer plasmonic films,” Adv. Photonics Res. 3 (5), 2100333 (2022). https://doi.org/10.1002/adpr.202100333

    Article  Google Scholar 

  30. D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104 (22), 221107 (2014). https://doi.org/10.1063/1.4881267

    Article  ADS  Google Scholar 

  31. G. Kajtár, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Theoretical model of homogeneous metal–insulator–metal perfect multi-band absorbers for the visible spectrum,” J. Phys. D: Appl. Phys. 49 (5), 055104 (2016). https://doi.org/10.1088/0022-3727/49/5/055104

    Article  ADS  Google Scholar 

  32. Y. K. Zhong, Y.-C. Lai, M.-H. Tu, B.-R. Chen, S. M. Fu, P. Yu, and A. Lin, “Omnidirectional, polarization-independent, ultra-broadband metamaterial perfect absorber using field-penetration and reflected-wave-cancellation,” Opt. Express 24 (10), A832–A845 (2016). https://doi.org/10.1364/OE.24.00A832

    Article  Google Scholar 

  33. H. Cai, M. Wang, Z. Wu, X. Wang, and J. Liu, “Design of multilayer planar film structures for near-perfect absorption in the visible to near-infrared,” Opt. Express 30 (20), 35219–35231 (2022). https://doi.org/10.1364/OE.469855

    Article  ADS  Google Scholar 

  34. K. Choudhary and S. Kumar, “Optimized plasmonic reversible logic gate for low loss communication,” Appl. Opt. 60 (16), 4567–4572 (2021). https://doi.org/10.1364/AO.428158

    Article  ADS  Google Scholar 

  35. M. Abbasi, M. Sadeghi, and Z. Adelpour, “Design of an all-optical insulator–metal–insulator and metal–insulator–metal Feynman logic gates,” Appl. Opt. 61 (21), 6144–6151 (2022). https://doi.org/10.1364/AO.465712

    Article  ADS  Google Scholar 

  36. S. Tannaz, M. Moradkhani, M. Taherzade, and M. H. Rezaei, “Ultracompact, high-extinction ratio XOR, OR, and Feynman logic gates based on plasmonic metal–insulator–metal directional couplers,” Appl. Opt. 62 (3), 644–653 (2023). https://doi.org/10.1364/AO.478011

    Article  ADS  Google Scholar 

  37. A. Sreevani, I. Charles, S. Swarnakar, S. V. Krishna, and S. Kumar, “Design and characteristic analysis of an all-optical AND, XOR, and XNOR Y-shaped MIM waveguide for high-speed information processing,” Appl. Opt. 61 (5), 1212–1218 (2022). https://doi.org/10.1364/AO.451871

    Article  ADS  Google Scholar 

  38. C. C. Katsidis and D. I. Siapkas, “General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference,” Appl. Opt. 41 (19), 3978–3987 (2002). https://doi.org/10.1364/AO.41.003978

    Article  ADS  Google Scholar 

  39. P. Yeh, A. Yariv, and C.-S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67 (4), 423–438 (1977). https://doi.org/10.1364/JOSA.67.000423

    Article  ADS  Google Scholar 

  40. K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2 (3), 326–333 (2015). https://doi.org/10.1021/ph5004237

    Article  Google Scholar 

  41. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55 (10), 1205–1209 (1965). https://doi.org/10.1364/JOSA.55.001205

    Article  ADS  Google Scholar 

  42. T. Zhu, Y. Zhou, Y. Lou, H. Ye, M. Qiu, Z. Ruan, and S. H. Fan, “Plasmonic computing of spatial differentiation,” Nat. Commun. 8, 15391 (2017). https://doi.org/10.1038/ncomms15391

    Article  ADS  Google Scholar 

  43. Z. Ruan, “Spatial mode control of surface plasmon polariton excitation with gain medium: From spatial differentiator to integrator,” Opt. Lett. 40 (4), 601–604 (2015). https://doi.org/10.1364/OL.40.000601

    Article  ADS  Google Scholar 

  44. A. Youssefi, F. Zangeneh-Nejad, S. Abdollahramezani, and A. Khavasi, “Analog computing by Brewster effect,” Opt. Lett. 41 (15), 3467–3470 (2016). https://doi.org/10.1364/OL.41.003467

    Article  ADS  Google Scholar 

  45. D. V. Nesterenko, M. D. Kolesnikova, and A. V. Lyubarskaya, “Optical differentiation based on the Brewster effect,” Comput. Opt. 42 (5), 758–763 (2018). https://doi.org/10.18287/2412-6179-2018-42-5-758-763

    Article  ADS  Google Scholar 

  46. D. V. Nesterenko, A. V. Lyubarskaya, M. D. Kolesnikova, and V. A. Soifer, “The dependence of the image edge detection directivity by Brewster effect on the gradient of inhomogeneities of objects,” J. Phys.: Conf. Ser. 1368 (2), 022066 (2019). https://doi.org/10.1088/1742-6596/1368/2/022066

    Article  Google Scholar 

  47. M. D. Kolesnikova, A. V. Lyubarskaya, D. V. Nesterenko, and V. A. Soifer, “The resolution of optical image edge detection based on Brewster effect,” J. Phys.: Conf. Ser. 1368 (2), 022016 (2019). https://doi.org/10.1088/1742-6596/1368/2/022016

    Article  Google Scholar 

  48. D. V. Nesterenko, M. D. Kolesnikova, L. V. Lyubarskaya, and V. A. Soifer, “Brewster effect in the broadband light reflectivity,” J. Phys.: Conf. Ser. 1461, 012116 (2020). https://doi.org/10.1088/1742-6596/1461/1/012116

    Article  Google Scholar 

  49. A. I. Kashapov, L. L. Doskolovich, D. A. Bykov, E. A. Bezus, and D. V. Nesterenko, “Optical differentiator based on a trilayer metal-dielectric structure,” Comput. Opt. 45 (3), 356–363 (2021). https://doi.org/10.18287/2412-6179-CO-824

    Article  ADS  Google Scholar 

  50. L. Wesemann, E. Panchenko, K. Singh, E. Della Gaspera, D. E. Gómez, T. J. Davis, and A. Roberts, “Selective near-perfect absorbing mirror as a spatial frequency filter for optical image processing,” APL Photonics 4 (10), 100801 (2019). https://doi.org/10.1063/1.5113650

    Article  ADS  Google Scholar 

  51. D. Nesterenko, S. Hayashi, and V. Soifer, “Approximation of Fabry–Pérot resonances in Ag/quartz/Ag structures,” in Proc. Int. Conf. on Information Technology and Nanotechnology (ITNT), Samara, Russia, May 26–29, 2020 (IEEE, 2020), pp. 1–3. https://doi.org/10.1109/ITNT49337.2020.9253286

  52. D. V. Nesterenko, A. A. Morozov, and L. L. Doskolovich, “Optical image edge detection by transmissive metal–dielectric–metal structures,” Comput. Opt. 45 (5), 678–684 (2021). https://doi.org/10.18287/2412-6179-CO-853

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by Russian Science Foundation (Project no. 19-19-00514; in part of design of coupled mode models), the State Assignment of FSRC “Crystallography and Photonics” RAS (in part of image processing review), and the Ministry of Science and Higher Education of the Russian Federation (State assignment for research to Samara University (laboratory “Photonics for Smart Home and Smart City”, project FSSS-2021-0016) (in part of results obtained within the electromagnetic theory).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Nesterenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

The text was submitted by the authors in English.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nesterenko, D.V., Hayashi, S. & Soifer, V. Fabry–Pérot Resonances in Planar Metal–Insulator–Metal Structures for Optical Data Processing: A Review. Phys. Wave Phen. 31, 293–311 (2023). https://doi.org/10.3103/S1541308X23050096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X23050096

Keywords:

Navigation