Skip to main content
Log in

Airy–Gauss Beam in Optical Manipulation Problems

  • OPTICAL SPECTROSCOPY
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

Propagation of the Airy–Gauss beam is analyzed in the paraxial approximation for the case where its waist associated with the Gaussian exponential is in an arbitrarily located plane perpendicular to the propagation direction. It is shown that from the viewpoint of the quality criteria for the approximation of the Airy function, the characteristic length of diffraction-free propagation, and the beam intensity and its derivatives with respect to transverse coordinates at different points of space, the Airy–Gauss beams are superior to the widely used Airy beams. The results of the analysis of how the Airy–Gauss beam characteristics affect the longitudinal and transverse density components of the orbital and spin constituents of the momentum and angular momentum, which is necessary information for problems of optical manipulation of micro- and nanoparticles, allows these beams to be considered as more promising for solving these problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. M. A. Bandres and J. C. Gutiérrez-Vega, “Airy-Gauss beams and their transformation by paraxial optical systems,” Opt. Express 15 (25), 16719–16728 (2007). https://doi.org/10.1364/OE.15.016719

    Article  ADS  Google Scholar 

  2. N. K. Efremidis, Z. Chen, M. Segev, and D. N. Christodoulides, “Airy beams and accelerating waves: An overview of recent advances,” Optica 6 (5), 686–701 (2019). https://doi.org/10.1364/OPTICA.6.000686

    Article  ADS  Google Scholar 

  3. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Ballistic dynamics of Airy beams,” Opt. Lett. 33 (3), 207–209 (2008). https://doi.org/10.1364/OL.33.000207

    Article  ADS  Google Scholar 

  4. L. Zhu, Z. Yang, S. Fu, Z.Cao, Y. Wang, Y. Qin, and A. M. J. Koonen, “Airy beam for free-space photonic interconnection: Generation strategy and trajectory manipulation,” J. Lightwave Technol. 38 (23), 6474–6480 (2020). https://opg.optica.org/jlt/abstract. cfm?URI=jlt-38-23-6474

    Article  ADS  Google Scholar 

  5. M. Goutsoulas and N. K. Efremidis, “Precise amplitude, trajectory, and beam-width control of accelerating and abruptly autofocusing beams,” Phys. Rev. A 97 (6), 063831 (2018) https://doi.org/10.1103/PhysRevA.97.063831

    Article  ADS  Google Scholar 

  6. J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wave packets,” Nat. Photonics 2, 675–678 (2008). https://doi.org/10.1038/nphoton.2008.201

    Article  ADS  Google Scholar 

  7. W. Lu, X. Sun, H. Chen, S. Liu, and Z. Lin “Optical manipulation of chiral nanoparticles in vector Airy beam,” J. Opt. 20 (12), 125402 (2018). https://doi.org/10.1088/2040-8986/aaea4d

    Article  ADS  Google Scholar 

  8. R. A. B. Suarez, A. A. R. Neves, and M. R. R. Gesualdi, “Optimizing optical trap stiffness for Rayleigh particles with an Airy array beam,” J. Opt. Soc. Am. B 37 (2), 264–270 (2020). https://doi.org/10.1364/JOSAB.379247

    Article  ADS  Google Scholar 

  9. R. A. B. Suarez, A. A. R. Neves, and M. R. R. Gesualdi, “Optical trapping with non-diffracting Airy beams array using a holographic optical tweezers,” Opt. Laser Technol. 135, 106678 (2021). https://doi.org/10.1016/j.optlastec.2020.106678

    Article  Google Scholar 

  10. F. Lu, L. Tan, Z. Tan, H. Wu, and Y. Liang, “Dynamical power flow and trapping-force properties of two-dimensional Airy-beam superpositions,” Phys. Rev. A 104 (2), 023526 (2021). https://doi.org/10.1103/PhysRevA.104.023526

    Article  ADS  Google Scholar 

  11. E. Otte and C. Denz, “Optical trapping gets structure: Structured light for advanced optical manipulation,” Appl. Phys. Rev. 7 (4), 041308 (2020). https://doi.org/10.1063/5.0013276

    Article  ADS  Google Scholar 

  12. Giov. Volpe, O. M. Maragò, H. Rubinsztein-Dunlop, G. Pesce, A. B. Stilgoe, Gior. Volpe, G. Tkachenko, V. G. Truong, S. N. Chormaic, F. Kalantarifard, P. Elahi, M. Käll, A. Callegari, M. I. Marqués, A. A. R. Neves, W. L. Moreira, A. Fontes, C. L. Cesar, R. Saija, A. Saidi, P. Beck, J. S. Eismann, P. Banzer, T. F. D. Fernandes, F. Pedaci, W. P. Bowen, R. Vaippully, M. Lokesh, B. Roy, G. Thalhammer-Thurner, M. Ritsch-Marte, L. Pérez García, A. V. Arzola, I. Pérez Castillo, A. Argun, T. M. Muenker, B. E. Vos, T. Betz, I. Cristiani, P. Minzioni, P. J. Reece, F. Wang, D. McGloin, J. C. Ndukaife, R. Quidant, R. P. Roberts, C. Laplane, Th. Volz, R. Gordon, D. Hanstorp, J. T. Marmolejo, G. D. Bruce, K. Dholakia, T. Li, O. Brzobohatý, S. H. Simpson, P. Zemánek, F. Ritort, Y. Roichman, V. Bobkova, R. Wittkowski, C. Denz, G. V. Pavan Kumar, A. Foti, M. G. Donato, P. G. Gucciardi, L. Gardini, G. Bianchi, A. V. Kashchuk, M. Capitanio, L. Paterson, P. H. Jones, K. Berg-Sørensen, Y. F. Barooji, L. B. Oddershede, P. Pouladian, D. Preece, C. B. Adiels, A. C. De Luca, A. Magazzù, D. B. Ciriza, M. A. Iatì, and G. A. Swartzlander, Jr., “Roadmap for optical tweezers,” J. Phys. Photonics 5 (2), 022501 (2023). https://doi.org/10.1088/2515-7647/acb57b

  13. J. Zhu, H. Tang, and Q. Gao, “Propagation of an Airy-Gaussian beam passing through a lens with low effective Fresnel number,” Results Phys. 16, 102854 (2020). https://doi.org/10.1016/j.rinp.2019.102854

    Article  Google Scholar 

  14. H. Peng, Y. Li, J. Peng, B. Wen, Y. Deng, and P. Tang, “Evolution of Airy-Gaussian pulses in photonic crystal fiber with two zero-dispersion wavelengths,” Optik 250, 168324 (2022). https://doi.org/10.1016/j.ijleo.2021.168324

    Article  ADS  Google Scholar 

  15. O. V. Angelsky, A. Y. Bekshaev, S. G. Hanson, C. Y. Zenkova, I. I. Mokhun, and Z. Jun, “Structured light: Ideas and concepts,” Front. Phys. 8, 114 (2020). https://doi.org/10.3389/fphy.2020.00114

    Article  Google Scholar 

  16. V. A. Makarov and V. M. Petnikova, “Comment on “Canonical momentum, angular momentum, and helicity of circularly polarized Airy beams” by Y. Hui et al. [Phys. Lett. A 384 (2020) 126284],” Phys. Lett. A 393, 127175 (2021). https://doi.org/10.1016/j.physleta.2021.127175

    Article  MathSciNet  Google Scholar 

  17. V. M. Petnikova and V. A. Makarov, “Angular momentum of Airy beams under diffraction,” Proc. Int. Conf. Days on Diffraction, St. Petersburg, Russian Federation, May 31–June 4, 2021 (IEEE, 2021), pp. 130–134. https://doi.org/10.1109/DD52349.2021.9598730

  18. V. A. Makarov, V. M. Petnikova, “Control of structured light at variation in the initial launch angle demonstrated with the Airy beam,” Phys. Wave Phenom. 30 (4), 260–264 (2022). https://doi.org/10.3103/S1541308X22040057

    Article  ADS  Google Scholar 

  19. V. M. Petnikova and V. A. Makarov, “The role of Airy beam parameters in the optical manipulation problems,” Proc. Int. Conf. Days on Diffraction, St. Petersburg, Russian Federation, May 30–June 3, 2022 (IEEE, 2022), pp. 120–124. https://doi.org/10.1109/DD55230.2022.9961021

  20. D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Lim, and C.-W. Qiu, “Optical manipulation from the microscale to the nanoscale: Fundamentals, advances and prospects,” Light: Sci. Appl. 6, e17039 (2017). https://doi.org/10.1038/lsa.2017.39

    Article  ADS  Google Scholar 

  21. S. Sukhov and A. Dogariu, “Non-conservative optical forces,” Rep. Prog. Phys. 80 (11), 112001 (2017). https://doi.org/10.1088/1361-6633/aa834e

    Article  ADS  MathSciNet  Google Scholar 

  22. V. Svak, O. Brzobohatý, M. Šiler, P. Jákl, J. Kaňka, P. Zemánek, and S. H. Simpson, “Transverse spin forces and non-equilibrium particle dynamics in a circularly polarized vacuum optical trap,” Nat. Commun. 9, 5453 (2018). https://doi.org/10.1038/s41467-018-07866-8

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Petnikova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Potapov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makarov, V.A., Petnikova, V.M. Airy–Gauss Beam in Optical Manipulation Problems. Phys. Wave Phen. 31, 327–331 (2023). https://doi.org/10.3103/S1541308X23050084

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X23050084

Keywords:

Navigation