Skip to main content
Log in

Passive Thermal Compensation of the Spectral Characteristic of the Integrated-Optical Demultiplexer

  • OPTICAL SPECTROSCOPY
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

The method of passive thermal compensation of the arrayed waveguide grating (AWG) demultiplexer based on a cut in the input planar waveguide and a controlled angle of rotation of a part of this waveguide is investigated. A possibility of performing this thermal compensation is shown, restrictions on the choice of the demultiplexer parameters to be observed for functioning of the demultiplexer are obtained, and relevant recommendations are given. A simple algebraic expression for the derivative of the compensation angle with respect to temperature is obtained, which is needed for development of the demultiplexer. In the given numerical example, this derivative is 3.5 × 10–5 rad/K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. V. R. Marrazzo, F. Fienga, M. Riccio, A. Irace, and G. Breglio, “Multichannel approach for arrayed waveguide grating based FBG interrogation systems,” Sensors 21 (18), 6214 (2021). https://doi.org/10.3390/s21186214

    Article  ADS  Google Scholar 

  2. H. Li, Y. Li, E. Li, X. Dong, Y. Bai, Y. Liu, and W. Zhou, “Temperature-insensitive arrayed waveguide grating demodulation technique for fiber Bragg grating sensor,” Opt. Laser Technol. 51, 77–81 (2013). https://doi.org/10.1016/j.optlastec.2013.04.002

    Article  ADS  Google Scholar 

  3. Y. C. Xu, Q. N. Wang, and W. Z. Zhu, “Design and simulation of arrayed waveguide grating for miniature Raman spectrometer,” Appl. Mech. Mater. 644–650, 3588–3592 (2014). https://doi.org/10.4028/www.scientific.net/AMM.644-650.3588

  4. P. Muñoz, R. García-Olcina, J. D. Doménech, M. Rius, J. Capmany, L. Chen, C. Habib, X. J. M. Leijtens, T. de Vries, M. J. R. Heck, L. Augustin, R. Nötzel, and D. Robbins, “Multi-wavelength laser based on an Arrayed Waveguide Grating and Sagnac loop reflectors monolithically integrated on InP,” Proc. 15th Eur. Conf. on Integrated Optics (ECIO 2010), Cambridge, UK, April 7–9, 2010 (IEEE, 2010), pp. 1–2. https://www.ecio-conference.org/wp-content/uploads/2016/05/2010/ ECIO-2010_WeF2.pdf

  5. A. Stoll, Z. Zhang, R. Haynes, and M. Roth, “High-resolution arrayed-waveguide-gratings in astronomy: Design and fabrication challenges,” Photonics 4 (2), 30 (2017). https://doi.org/10.3390/photonics4020030

    Article  Google Scholar 

  6. M. Yasumoto, T. Suzuki, A. Tate, and H. Tsuda, “Arrayed-waveguide grating with wavefront compensation lenses for spatial filter integration,” IEICE Electron. Express 3 (11), 221–226 (2006). https://doi.org/10.1587/elex.3.221

    Article  Google Scholar 

  7. Ultrafast Lasers: Technology and Applications, Ed. by M. E. Fermann, A. Galvanauskas, and G. Sucha (Marcel Dekker, New York, 2003).

    Google Scholar 

  8. J. Meyer, A. Nedjalkov, E. Pichler, C. Kelb, and W. Schade, “Development of a polymeric arrayed waveguide grating interrogator for fast and precise lithium-ion battery status monitoring,” Batteries 5 (4), 66 (2019). https://doi.org/10.3390/batteries5040066

    Article  Google Scholar 

  9. H. Ehlers, M. Biletzke, B. Kuhlow, G. Przyrembel, and U. H. P. Fischer, “Optoelectronic packaging of arrayed-waveguide grating modules and their environmental stability tests,” Opt. Fiber Technol. 6 (4), 344–356 (2000). https://doi.org/10.1006/ofte.2000.0341

    Article  ADS  Google Scholar 

  10. D.-L. Li, C.-S. Ma, Z.-K. Qin, H.-M. Zhang, D.‑M. Zhang, and S.-Y. Liu, “Design of athermal arrayed waveguide grating using silica/polymer hybrid materials,” Opt. Appl. 37 (3), 305–312 (2007). https://dbc.wroc.pl/Content/63129/optappl_3703p305.pdf

    Google Scholar 

  11. K. Maru, Y. Abe, M. Ito, H. Ishikawa, S. Himi, H. Uetsuka, and T. Mizumoto, “2.5%-Δ silica-based athermal arrayed waveguide grating employing spot-size converters based on segmented core,” IEEE Photonics Technol. Lett. 17 (11), 2325–2327 (2005). https://doi.org/10.1109/LPT.2005.857233

    Article  ADS  Google Scholar 

  12. K. Maru and Y. Abe, “Low-loss, flat-passband and athermal arrayed waveguide grating multi/demultiplexer,” Opt. Express 15 (26), 18351–18356 (2007) https://doi.org/10.1364/OE.15.018351

    Article  ADS  Google Scholar 

  13. A. Kaneko, S. Kamei, Y. Inoue, H. Takahashi, and A. Sugita, “Athermal silica-based arrayed-waveguide grating (AWG) multiplexers with new low loss groove design,” Proc. Optical Fiber Communication Conf. and the Int. Conf. on Integrated Optics and Optical Fiber Communication, San Diego, CA, USA, February 21–26, 1999 (IEEE, 1999), pp. 204–206. https://doi.org/10.1109/OFC.1999.767839

  14. S. Kamei, Y. Inoue, T. Shibata, and A. Kaneko, “Low-loss and compact silica-based athermal arrayed waveguide grating using resin-filled groove,” J. Lightwave Technol. 27 (17), 3790–3799 (2009). https://doi.org/10.1109/JLT.2008.2007657

    Article  ADS  Google Scholar 

  15. S. Kamei, K. Iemura, A. Kaneko, Y. Inoue, T. Shibata, H. Takahashi, and A. Sugita, “1.5%-Δ athermal arrayed-waveguide grating multi/demultiplexer with very low loss groove design,” IEEE Photonics Technol. Lett. 17 (3), 588–590 (2005). https://doi.org/10.1109/LPT.2004.840990

    Article  ADS  Google Scholar 

  16. T. Zhou and W. Ma, “A novel fabrication approach for an athermal arrayed-waveguide grating,” J. Semicond. 31 (1), 014005 (2010). https://doi.org/10.1088/1674-4926/31/1/014005

    Article  Google Scholar 

  17. J. Hasegawa and K. Nara, “Ultra-wide temperature range (–30∼70°C) operation of athermal AWG module using pure aluminum plate,” Proc. Optical Fiber Communication Conf. and Exposition and the National Fiber Optic Engineers Conf., Anaheim, California, March 5–10, 2006 (Opt. Publ. Group, 2006), p. OWI68.

  18. B. P. Mcginnis, US Patent No. 8,538,212 B2 (2011).

  19. R. Cole, M. Guerrero, K. Purchase, A. J. Ticknor, K. Mcgreer, D. Menche, and P. D. Ascanio, EP Patent No. 1,743,201 B1 (2004).

  20. R. Marz, Integrated Optics: Design and Modeling (Artech House, Norwood, MA, 1994).

    Google Scholar 

  21. Encyclopedic Handbook of Integrated Optics, Ed. by K. Iga and Y. Kokubun (CRC Press, Boca Raton, 2006). https://doi.org/10.1201/9781315220949

  22. T. Saito, K. Nara, K. Tanaka, Y. Nekado, J. Hasegawa, and K. Kashihara, “Temperature-insensitive (athermal) AWG modules,” Furukawa Rev. 24, 29–33 (2003).

    Google Scholar 

Download references

Funding

The work was supported by the Zelenograd Nanotechnological Center (ZNTC Co.). All rights to the usage of the results belong to the ZNTC Co.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Likhachev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Potapov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Likhachev, I.G., Guryev, D.A., Pustovoy, V.I. et al. Passive Thermal Compensation of the Spectral Characteristic of the Integrated-Optical Demultiplexer. Phys. Wave Phen. 31, 320–326 (2023). https://doi.org/10.3103/S1541308X23050072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X23050072

Keywords:

Navigation