Skip to main content
Log in

Manifestations of the Dicke Narrowing at Fast Recording of High-Resolution Absorption Spectra Using Frequency-Tunable Lasers

  • OPTICAL SPECTROSCOPY
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

The possibility of performing quantitative absorption measurements of particle concentrations using frequency-tunable lasers is investigated. At fast frequency scanning, when the recording time of spectrum is shorter or comparable with its formation time, well-known time-dependent interference interactions between the radiation incident on an absorbing medium and the radiation induced in it are observed. Under these conditions steady-state absorption spectra are distorted, and the classical relations lying in the basis of absorption measurements are violated. The character of the distortions depends on the type and density of particles, their absorption state, the mechanisms of spectra formation, and the laser beam power and geometry. In this paper, we report the results of studying the manifestations of Doppler profile narrowing caused by the Dicke effect in time-dependent spectra and their influence on the results of measuring the concentrations of absorbing particles. It is shown that the static spectrum can be reconstructed and quantitative measurements by integrated absorption spectroscopy can be performed under these conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. N. Blombergen, E. M. Parcell, and R. V. Pound, “Relaxation effects in nuclear magnetic resonance absorption,” Phys. Rev. 73 (7), 679–712 (1948). https://doi.org/10.1103/PhysRev.73.679

    Article  ADS  Google Scholar 

  2. F. Bloch, “Nuclear induction,” Phys. Rev. 70 (7–8), 460–473 (1946). https://doi.org/10.1103/PhysRev.70.460

  3. I. I. Zasavitskii, M. A. Kerimkulov, A. I. Nadezhdinskii, V. N. Ochkin, S. Yu. Savinov, M. V. Spiridonov, and A. P. Shotov, “Coherent nonstationary effects during rapid recording of an absorption spectrum,” Opt. Spectrosc. 65 (6), 706–709 (1988).

    ADS  Google Scholar 

  4. A. I. Volkova, V. V. Lagunov, and V. N. Ochkin, “Particle concentration measurements during fast recording of absorption spectra,” Phys. Wave Phenom. 31 (1), 1–14 (2023). https://doi.org/10.3103/S1541308X23010089

    Article  ADS  Google Scholar 

  5. L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.‑Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96 (2), 139–204 (2005). https://doi.org/10.1016/j.jqsrt.2004.10.008

    Article  ADS  Google Scholar 

  6. R. H. Dicke, “The effect of collisions upon the Doppler width of spectral lines,” Phys. Rev. 89 (2), 472–473 (1953). https://doi.org/10.1103/PhysRev.89.472

    Article  ADS  Google Scholar 

  7. S. G. Rautian and I. I. Sobel’man, “The effect of collisions on the Doppler broadening of spectral lines,” Sov. Phys.-Usp. 9 (5), 701–716 (1967). https://doi.org/10.1070/PU1967v009n05ABEH003212

    Article  ADS  Google Scholar 

  8. L. Galatry, “Simultaneous effect of Doppler and foreign gas broadening on spectral lines,” Phys. Rev. 122 (4), 1218–1223 (1961). https://doi.org/10.1103/PhysRev.122.1218

    Article  ADS  MATH  Google Scholar 

  9. J. Tennyson, P. F. Bernath, A. Campargue, A. G. Császár, L. Daumont, R. R. Gamache, J. T. Hodges, D. Lisak, O. V. Naumenko, L. S. Rothman, H. Tran, N. F. Zobov, J. Buldyreva, C. D. Boone, M. D. De Vizia, L. Gianfrani, J.-M. Hartmann, R. McPheat, D. Weidmann, J. Murray, N. H. Ngo, and O. L. Polyansky, “Recommended isolated-line profile for representing high-resolution spectroscopic transitions (IUPAC Technical Report),” Pure Appl. Chem. 86 (12), 1931–1943 (2014). https://doi.org/10.1515/pac-2014-0208

    Article  Google Scholar 

  10. H. Tran, N. H. Ngo, and J.-M. Hartmann, “Efficient computation of some speed-dependent isolated line profiles,” J. Quant. Spectrosc. Radiat. Transfer 129, 199–203 (2013). https://doi.org/10.1016/j.jqsrt.2013.06.015

    Article  ADS  Google Scholar 

  11. S. G. Rautian, “Universal asymptotic profile of a spectral line under a small Doppler broadening,” Opt. Spectrosc. 90 (1), 30–40 (2001). https://doi.org/10.1134/1.1343544

    Article  ADS  Google Scholar 

  12. I. I. Sobelman, An Introduction to the Theory of Atomic Spectra (Fizmatlit, Moscow, 1963) [in Russian].

    Google Scholar 

  13. V. N. Ochkin, Spectroscopy of Low Temperature Plasma (Wiley, New York, 2009).

    Book  Google Scholar 

  14. R. V. Kochanov, I. E. Gordon, L. S. Rothman, P. Wcisło, C. Hill, and J. S. Wilzewski, “HITRAN Application Programming Interface (HAPI): A comprehensive approach to working with spectroscopic data,” J. Quant. Spectrosc. Radiat. Transfer 177, 15–30 (2016). https://doi.org/10.1016/j.jqsrt.2016.03.005

    Article  ADS  Google Scholar 

  15. H. Fleurbaey, Z. D. Reed, E. M. Adkins, D. A. Long, and J. T. Hodges, “High accuracy spectroscopic parameters of the 1.27 μm band of O2 measured with comb-referenced, cavity ring-down spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 270, 107684 (2021). https://doi.org/10.1016/j.jqsrt.2021.107684

    Article  Google Scholar 

  16. R. S. Eng, A. R. Calawa, T. C. Harman, P. L. Kelley, and A. Javan, “Collisional narrowing of infrared water-vapor transitions,” Appl. Phys. Lett. 21 (7), 303–305 (1972). https://doi.org/10.1063/1.1654387

    Article  ADS  Google Scholar 

  17. Ya. Ya. Ponurovskii, S. V. Ivanov, Sh. Sh. Nabiev, and V. M. Semenov, “Study of the HF overtone line profile broadened by Ar, Xe, Kr, N2 using near-IR region diode laser spectroscopy,” Bull. Lebedev Phys. Inst. 41 (1), 22–29 (2014). https://doi.org/10.3103/S1068335614010059

    Article  ADS  Google Scholar 

  18. N. Tasinato, G. Duxbury, N. Langford, and K. G. Hay, “An investigation of collisional processes in a Dicke narrowed transition of water vapor in the 7.8 μm spectral region by frequency down-chirped quantum cascade laser spectroscopy,” J. Chem. Phys. 132, 044316 (2010). https://doi.org/10.1063/1.3299263

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, project no. 19-12-00310.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Lagunov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Sin’kov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lagunov, V.V., Ochkin, V.N. & Volkova, A.I. Manifestations of the Dicke Narrowing at Fast Recording of High-Resolution Absorption Spectra Using Frequency-Tunable Lasers. Phys. Wave Phen. 31, 312–319 (2023). https://doi.org/10.3103/S1541308X23050060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X23050060

Keywords:

Navigation