Skip to main content
Log in

Robustness of Holographic Processing of Hydroacoustic Signals in the Presence of Intense Internal Waves

  • ACOUSTICS AND HYDROACOUSTICS
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

The robustness of the holographic processing of hydroacoustic broadband signals with respect to the spatial and temporal inhomogeneities of the ocean medium has been experimentally studied. The experiment was performed in shallow water against the background of intense internal waves (IIWs). The sound source was a towed pneumatic emitter; a single hydrophone played the role of a receiver. The interference patterns and holograms of sound pressure for different instants, when a perturbation of the medium caused horizontal refraction or coupling of acoustic field modes, are presented. It is shown that, in the presence of IIWs (which perturb the source field), holographic processing makes it possible to separate the spectral densities of unperturbed and perturbed fields. This circumstance allows one to reconstruct the hologram and interference pattern of unperturbed source field, thus demonstrating the robustness of holographic processing of hydroacoustic signals in the presence of hydrodynamic perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. G. N. Kuznetsov, V. M. Kuz’kin, S. A. Pereselkov, and I. V. Kaznacheev, “Noise source localization in shallow water,” Phys. Wave Phenom. 25 (2), 156–163 (2017). https://doi.org/10.3103/S1541308X17020145

    Article  ADS  Google Scholar 

  2. G. N. Kuznetsov, V. M. Kuz’kin, and S. A. Pereselkov, “Spectrogram and localization of a sound source in shallow water,” Acoust. Phys. 63 (4), 449–461 (2017). https://doi.org/10.1134/S1063771017040078

    Article  ADS  Google Scholar 

  3. G. N. Kuznetsov, V. M. Kuz’kin, S. A. Pereselkov, I. V. Kaznacheev, and V. A. Grigor’ev, “Interferometric method for estimating the velocity of a noise sound source and the distance to it in shallow water using a vector-scalar receiver,” Phys. Wave Phenom. 25 (4), 299–306 (2017). https://doi.org/10.3103/S1541308X17040100

    Article  ADS  Google Scholar 

  4. I. V. Kaznacheev, G. N. Kuznetsov, V. M. Kuz’kin, and S. A. Pereselkov, “An interferometric method for detecting a moving sound source with a vector-scalar receiver,” Acoust. Phys. 64 (1), 37–48 (2018). https://doi.org/10.1134/S1063771018010104

    Article  ADS  Google Scholar 

  5. S. A. Pereselkov and V. M. Kuz’kin, “Interferometric processing of hydroacoustic signals for the purpose of source localization,” J. Acoust. Soc. Am. 151 (2), 666–676 (2022). https://doi.org/10.1121/10.0009381

    Article  ADS  Google Scholar 

  6. J. Apel, M. Badiey, C. Chiu, S. Finette, R. H. Headrick, J. Kemp, J. Lynch, A. Newhall, M. Orr, B. Pasewark, D. Tielburger, A. Turgut, K. V. D. Heydt, and S. Wolf, “An overview of the SWARM 1995 shallow-water internal wave acoustic scattering experiment,” IEEE J. Ocean. Eng. 22, 465–500 (1997). https://doi.org/10.1109/48.611138

    Article  ADS  Google Scholar 

  7. S. D. Frank, M. Badiey, J. Lynch, and W. Siegmann, “Analysis and modeling of broadband airgun data influenced by nonlinear internal waves,” J. Acoust. Soc. Am. 116 (6), 3404–3422 (2004). https://doi.org/10.1121/1.1819499

    Article  ADS  Google Scholar 

  8. V. M. Kuz’kin, S. A. Pereselkov, V. G. Zvyagin, A. Yu. Malykhin, and D. Yu. Prosovetskiy, “Intense internal waves and their manifestation in interference patterns of received signals on oceanic shelf,” Phys. Wave Phenom. 26 (2), 160–167 (2018). https://doi.org/10.3103/S1541308X18020103

    Article  ADS  Google Scholar 

  9. M. Badiey, V. M. Kuz’kin, G. A. Lyakhov, S. A. Pereselkov, D. Yu. Prosovetskiy, and S. A. Tkachenko, “Intense internal waves and their manifestation in the interference patterns of received signals on oceanic shelf. Part II,” Phys. Wave Phenom. 27 (4), 313–319 (2019). https://doi.org/10.3103/S1541308X19040125

    Article  ADS  Google Scholar 

  10. E. S. Kaznacheeva, V. M. Kuz’kin, and S. A. Pereselkov, “Interferometric processing of hydroacoustic information in the presence of intense internal waves,” Phys. Wave Phenom. 29 (3), 278–284 (2021). https://doi.org/10.3103/S1541308X21030067

    Article  ADS  Google Scholar 

  11. V. M. Kuz’kin, G. A. Lyakhov, S. A. Pereselkov, and E. S. Kaznacheeva, “The information transmission through random-inhomogeneous ocean environment,” Fundam. Prikl. Gidrofiz. 14 (2), 54–64 (2021) [in Russian]. https://doi.org/10.7868/S2073667321020052

  12. V. M. Kuz’kin, S. A. Pereselkov, E. S. Kaznacheeva, S. A. Tkachenko, P. V. Rybyanets, and V. I. Grachev, “Holographic processing of moving sources in a shallow sea with intense internal waves,” Radioelektron. Nanosist. Inf. Tekhnol. 14 (2), 197–204 (2022) [in Russia-n]. https://doi.org/10.17725/rensit.2022.14.197

  13. V. M. Kuz’kin, S. A. Pereselkov, V. I. Grachev, P. V. Rybyanets, and D. V. Sotnikov, “Holographic method for localizing a moving sound source in the presence of intense internal waves,” Radioelektron. Nanosist. Inf. Tekhnol. 14 (3) (2023) (in press) [in Ru-ssian].

  14. V. M. Kuz’kin, S. A. Pereselkov, S. A. Tkachenko, Yu. V. Matvienko, and Yu. A. Khvorostov, “Range of detection of underwater sound source,” Phys. Wave Phenom. 31 (5), 339–345 (2023). https://doi.org/10.3103/S1541308X23050047

  15. V. M. Kuz’kin, S. A. Pereselkov, G. N. Kuznetsov, and I. V. Kaznacheev, “Interferometric direction finding by a vector-scalar receiver,” Phys. Wave Phenom. 26 (1), 63–73 (2018). https://doi.org/10.3103/S1541308X18010090

    Article  ADS  Google Scholar 

  16. G. N. Kuznetsov, V. M. Kuz’kin, G. A. Lyakhov, S. A. Pereselkov, D. Yu. Prosovetskiy, “Direction finding of a noise sound source,” Phys. Wave Phenom. 27 (3), 237–241 (2019). https://doi.org/10.3103/S1541308X19030117

    Article  ADS  Google Scholar 

  17. K. V. Konyaev and K.D. Sabinin, The Waves within the Ocean (Gidrometeoizdat, St. Petersburg, 1992) [in Russian].

    Google Scholar 

  18. J. Zhou, X. Z. Zhang, and P. H. Rogers, “Resonant interaction of sound wave with internal solitons in the coastal zone,” J. Acoust. Soc. Am. 90 (4), 2042–2053 (1991). https://doi.org/10.1121/1.401632

    Article  ADS  Google Scholar 

  19. M. Hsu, A. Liu, and C. Liu, “A study of internal waves in the China seas and yellow sea using SAR,” Cont. Shelf Res. 20 (4–5), 389–410 (2000). https://doi.org/10.1016/S0278-4343(99)00078-3

  20. B. G. Katsnel’son and S. A. Pereselkov, “Low-frequency horizontal acoustic refraction caused by internal wave solitons in a shallow sea,” Acoust. Phys. 46 (6), 684–691 (2000). https://doi.org/10.1134/1.1326723

    Article  ADS  Google Scholar 

  21. R. Oba and S. Finette, “Acoustic propagation through anisotropic internal wave fields: Transmission loss, cross-range coherence, and horizontal refraction,” J. Acoust. Soc. Am. 111 (2), 769–784 (2002). https://doi.org/10.1121/1.1434943

    Article  ADS  Google Scholar 

  22. V. M. Kuz’kin, M. V. Kutsov, and S. A. Pereselkov, “Frequency shifts of sound field maxima in few-mode propagation, which are initiated by internal wave solitons,” Phys. Wave Phenom. 21 (2), 139−151 (2013). https://doi.org/10.3103/S1541308X13020064

    Article  ADS  Google Scholar 

  23. Cruise Report: Ocean Acoustic Experiments in Support of Shallow Water Acoustic Remote Measurements (SWARM), Univ. Delaware, Coll. Mar. Stud., Ocean Acoust. Lab., Newark, DE 19716, September 11, 1995.

  24. M. Badiey, B. G. Katsnelson, J. F. Lynch, S. Pereselkov, and W. L. Siegmann, “Measurement and modeling of three-dimensional sound intensity variations due to shallow-water internal waves,” J. Acoust. Soc. Am. 117 (2), 613−625 (2005). https://doi.org/10.1121/1.1828571

    Article  ADS  Google Scholar 

Download references

Funding

The research was supported by grant from the Russian Science Foundation no. 23-61-10024, https://rscf.ru/project/23-61-10024/. S.A. Tkachenko’s numerical simulation of sound field interferograms was supported by the grant of the President of the Russian Federation no. MK-4846.2022.4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Kuz’kin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Sin’kov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuz’kin, V.M., Pereselkov, S.A., Badiey, M. et al. Robustness of Holographic Processing of Hydroacoustic Signals in the Presence of Intense Internal Waves. Phys. Wave Phen. 31, 346–354 (2023). https://doi.org/10.3103/S1541308X23050059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X23050059

Keywords:

Navigation