Skip to main content
Log in

Dust Acoustic Solitary Waves with Vortex-Like Ion Distribution in Two-Dimensional Spherical Geometry

  • ACOUSTICS AND HYDROACOUSTICS
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

Nonplanar two-dimensional (2D) spherical dust acoustic solitary waves (DASWs) in unmagnetized, collisionless, Boltzmann distributed electrons, negatively charged dust fluid and trapped ions following vortex-like ion distribution, in a dusty plasma were investigated theoretically. Using standard reductive perturbation technique, which is valid for a small but finite amplitude limit condition, nonlinear spherical modified Korteweg–de Vries (K-dV) equation was achieved. Two motions are observed in the radial and angular directions, with transverse perturbations in the angular direction. It is found that the properties of the DASWs in a 2D spherical geometry differ from 1D spherical geometry where transverse perturbations and unidirectional waves are observed for 2D spherical geometry. The effects of dusty plasma parameters and vortex-like ion distribution on the properties (such as amplitude and width) of spherical DASWs were theoretically investigated. These numerical investigations show that under such specific conditions, only compressive DASWs can exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. C. K. Goertz, “Dusty plasmas in the solar system,” Rev. Geophys. 27 (2), 271–292 (1989). https://doi.org/10.1029/RG027i002p00271

    Article  ADS  Google Scholar 

  2. D. A. Mendis and M. Rosenberg, “Cosmic dusty plasma,” Annu. Rev. Astron. Astrophys. 32 (1), 419–463 (1994). https://doi.org/10.1146/annurev.aa.32.090194.002223

    Article  ADS  Google Scholar 

  3. N. D’Angelo, “Coulomb solids and low-frequency fluctuations in RF dusty plasmas,” J. Phys. D: Appl. Phys. 28 (5), 1009–1010 (1995). https://doi.org/10.1088/0022-3727/28/5/024

    Article  ADS  Google Scholar 

  4. N. N. Rao, P. K. Shukla, and M. Y. Yu, “Dust-acoustic waves in dusty plasmas,” Planet. Space Sci. 38 (4), 543–546 (1990). https://doi.org/10.1016/0032-0633(90)90147-I

    Article  ADS  Google Scholar 

  5. A. Barkan, R. L. Merlino, and N. D’angelo, “Laboratory observation of the dust-acoustic wave mode,” Phys. Plasmas 2 (10), 3563–3565 (1995). https://doi.org/10.1063/1.871121

    Article  ADS  Google Scholar 

  6. P. V. Bilokh and V. V. Yarashenko, “Electrostatic waves in Saturn’s rings,” Sov. Astron. 29, 330–336 (1985). https://adsabs.harvard.edu/full/1985SvA….29..330B

    ADS  Google Scholar 

  7. J. R. Franz, P.M. Kintner, and J. S. Pickett, “POLAR observations of coherent electric field structures,” Geophys. Res. Lett. 25 (8), 1277–1280 (1998). https://doi.org/10.1029/98GL50870

    Article  ADS  Google Scholar 

  8. A. A. Mamun and P. K. Shukla, “Cylindrical and spherical dust-acoustic shock waves in a strongly coupled dusty plasma,” New J. Phys. 11, 103022 (2009). https://doi.org/10.1088/1367-2630/11/10/103022

    Article  ADS  Google Scholar 

  9. A. A. Mamun and P. K. Shukla, “Nonplanar dust ion-acoustic solitary and shock waves in a dusty plasma with electrons following a vortex-like distribution,” Phys. Lett. A 374 (3), 472–475 (2010). https://doi.org/10.1016/j.physleta.2009.08.071

    Article  ADS  MATH  Google Scholar 

  10. T. S. Gill and S. Bansal, “Effect of non adiabatic dust charge fluctuation on nonplanar dust acoustic waves in superthermal polarized plasma,” Chaos, Solitons Fractals 147, 110953 (2021). https://doi.org/10.1016/j.chaos.2021.110953

    Article  MathSciNet  Google Scholar 

  11. B. Sahu and M. Tribeche, “Nonextensive dust acoustic solitary and shock waves in nonplanar geometry,” Astrophys. Space Sci. 338 (2), 259–264 (2012). https://doi.org/10.1007/s10509-011-0941-1

    Article  ADS  Google Scholar 

  12. M. S. Rahman, B. Shikha, and A. A. Mamun, “Time-dependent non-planar dust-acoustic solitary and shock waves in strongly coupled adiabatic dusty plasma,” J. Plasma Phys. 79 (3), 249–255 (2013). https://doi.org/10.1017/S0022377812000906

    Article  ADS  Google Scholar 

  13. A. Mannan and A. A. Mamun, “Nonplanar dust-acoustic Gardner solitons in a four-component dusty plasma,” Phys. Rev. E 84 (2), 026408 (2011). https://doi.org/10.1103/PhysRevE.84.026408

    Article  ADS  Google Scholar 

  14. D. K. Ghosh, P. Chatterjee, and B. Das, “Dust acoustic solitary waves with superthermal electrons in cylindrical and spherical geometry,” Indian J. Phys. 86 (9), 829–834 (2012). https://doi.org/10.1007/s12648-012-0137-8

    Article  ADS  Google Scholar 

  15. Z. Rahim, M. Adnan, A. Qamar, and A. Saha, “Nonplanar dust-acoustic waves and chaotic motions in Thomas Fermi dusty plasmas,” Phys. Plasmas 25 (8), 083706 (2018). https://doi.org/10.1063/1.5016893

    Article  ADS  Google Scholar 

  16. S. K. El-Labany, W. M. Moslem, and F. M. Safy, “Effects of two-temperature ions, magnetic field, and higher-order nonlinearity on the existence and stability of dust-acoustic solitary waves in Saturn’s F ring,” Phys. Plasmas 13 (8), 082903 (2006). https://doi.org/10.1063/1.2336183

    Article  ADS  Google Scholar 

  17. B. Tian and Y.-T. Gao, “Cylindrical nebulons, symbolic computation and Bäcklund transformation for the cosmic dust acoustic waves,” Phys. Plasmas 12 (7), 070703 (2005). https://doi.org/10.1063/1.1950120

    Article  ADS  MathSciNet  Google Scholar 

  18. H. Schamel and S. Bujarbarua, “Solitary plasma hole via ion-vortex distribution,” Phys. Fluids 23 (12), 2498–2499 (1980). https://doi.org/10.1063/1.862951

    Article  ADS  Google Scholar 

  19. S. S. Duha, S. K. Paul, A. A. Mamun, and M. R. Amin, “Nonplanar effects on solitary waves in an adiabatic dusty electronegative plasma,” IEEE Trans. Plasma Sci. 39 (6), 1544–1548 (2011). https://doi.org/10.1109/TPS.2011.2125992

    Article  ADS  Google Scholar 

  20. E. Eslami and R. Baraz, “Evolution of dust-acoustic solitary waves in a dusty plasma: Effects of vortex-like ion and nonthermal electron distributions,” IEEE Trans. Plasma Sci. 41 (7), 1805–1810 (2013). https://doi.org/10.1109/TPS.2013.2261321

    Article  ADS  Google Scholar 

  21. H. Schamel, “Stationary solitary, snoidal and sinusoidal ion acoustic waves,” Plasma Phys. 14 (10), 905–924 (1972). https://doi.org/10.1088/0032-1028/14/10/002

    Article  ADS  Google Scholar 

  22. H. Schamel, “Analytic BGK modes and their modulational instability,” J. Plasma Phys. 13 (1), 139–145 (1975). https://doi.org/10.1017/S0022377800025927

    Article  ADS  Google Scholar 

  23. H. Washimi and T. Taniuti, “Propagation of ion-acoustic solitary waves of small amplitude,” Phys. Rev. Lett. 17 (19), 996–998 (1966). https://doi.org/10.1103/PhysRevLett.17.996

    Article  ADS  Google Scholar 

  24. A. A. Mamun, R. A. Cairns, and P. K. Shukla, “Effects of vortex-like and non-thermal ion distributions on non-linear dust-acoustic waves,” Phys. Plasmas 3 (7), 2610–2614 (1996). https://doi.org/10.1063/1.871973

    Article  ADS  Google Scholar 

  25. A. A. Mamun, B. Eliasson, and P. K. Shukla, “Dust-acoustic solitary and shock waves in a strongly coupled liquid state dusty plasma with a vortex-like ion distribution,” Phys. Lett. A 332 (5–6), 412–416 (2004). https://doi.org/10.1016/j.physleta.2004.10.012

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hossein Mahdieh.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

The text was submitted by the authors in English.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kian, R.B., Mahdieh, M.H. Dust Acoustic Solitary Waves with Vortex-Like Ion Distribution in Two-Dimensional Spherical Geometry. Phys. Wave Phen. 31, 332–338 (2023). https://doi.org/10.3103/S1541308X23050035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X23050035

Keywords:

Navigation