Skip to main content
Log in

Equation of State for Tantalum at High Pressures in Waves of Shock Compression and Isentropic Expansion

  • SHOCK WAVES
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

A simple analytical function of pressure versus specific volume and specific internal energy is proposed for describing thermodynamic properties of tantalum in the region of high pressures in the shock-compression and isentropic-expansion waves. On the basis of this equation of state, thermodynamic characteristics of tantalum are calculated in a wide range of degrees of compression and heating. The results of the calculations are compared to the available tantalum data of experiments with shock and centered simple waves. The above equation of state can be used to simulate adiabatic wave processes at high energy densities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. L. D. Landau and E. M. Lifshitz, Statistical Physics (Butterworth-Heinemann, Oxford, 1980), part 1.

  2. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic, New York, 1967).

    Google Scholar 

  3. V. E. Fortov and I. V. Lomonosov, “Ya. B. Zeldovich and equation of state problems for matter under extreme conditions,” Phys.-Usp. 57 (3), 219–233 (2014). https://doi.org/10.3367/UFNe.0184.201403b.0231

    Article  ADS  Google Scholar 

  4. A. V. Bushman, V. E. Fortov, G. I. Kanel’, and A. L. Ni, Intense Dynamic Loading of Condensed Matter (Taylor & Francis, Washington, 1993).

    Google Scholar 

  5. I. V. Lomonosov and S. V. Fortova, “Wide-range semiempirical equations of state of matter for numerical simulation on high-energy processes,” High Temp. 55 (4), 585–610 (2017). https://doi.org/10.1134/S0018151X17040113

    Article  Google Scholar 

  6. R. K. Belkheeva, “Model of the Grüneisen coefficient for a wide range of densities on the example of copper,” High Temp. 60 (Suppl. 1), S26–S31 (2022). https://doi.org/10.1134/S0018151X21040040

    Article  Google Scholar 

  7. K. K. Mayevskii, “Numerical simulation of the thermodynamic parameters of germanium,” High Temp. 60 (6), 768–774 (2022). https://doi.org/10.1134/S0018151X22050212

    Article  Google Scholar 

  8. M. G. Gorman, C. J. Wu, R. F. Smith, L. X. Benedict, C. J. Prisbrey, W. Schill, S. A. Bonev, Z. C. Long, P. Söderlind, D. Braun, D. C. Swift, R. Briggs, T. J. Volz, E. F. O’Bannon, P. M. Celliers, D. E. Fratanduono, J. H. Eggert, S. J. Ali, and J. M. McNaney, “Ramp compression of tantalum to multiterapascal pressures: Constraints of the thermal equation of state to 2.3 TPa and 5000 K,” Phys. Rev. B 107 (1), 014109 (2023). https://doi.org/10.1103/PhysRevB.107.014109

    Article  ADS  Google Scholar 

  9. K. V. Khishchenko, “Equation of state for niobium at high pressures,” Math. Montisn. 47, 119–123 (2020). https://doi.org/10.20948/mathmontis-2020-47-10

    Article  MathSciNet  MATH  Google Scholar 

  10. K. V. Khishchenko, “Equation of state for vanadium at high pressures,” J. Phys.: Conf. Ser. 1787, 012001 (2021). https://doi.org/10.1088/1742-6596/1787/1/012001

    Article  Google Scholar 

  11. K. V. Khishchenko, “Equation of state of hafnium at high pressures in shock waves,” Phys. Wave Phenom. 31 (2), 123–125 (2023). https://doi.org/10.3103/S1541308X23020073

    Article  ADS  Google Scholar 

  12. A. V. Bushman, I. V. Lomonosov, V. E. Fortov, K. V. Khishchenko, M. V. Zhernokletov, and Yu. N. Sutulov, “Shock compressibility and equation of state of a polyimide,” JETP Lett. 58 (8), 620–624 (1993). http://www.jetpletters.ru/ps/1191/article_17982.pdf

    ADS  Google Scholar 

  13. I. V. Lomonosov, V. E. Fortov, and K. V. Khishchenko, “Model of wide-range equations of polymer materials state under high-energy densities,” Khim. Fiz. 14 (1), 47–52 (1995) [in Russian].

    Google Scholar 

  14. K. V. Khishchenko, I. V. Lomonosov, and V. E. Fortov, “Equations of state for organic compounds over wide range of densities and pressures,” AIP Conf. Proc. 370 (1), 125–128 (1996). https://doi.org/10.1063/1.50728

    Article  ADS  Google Scholar 

  15. K. V. Khishchenko, M. V. Zhernokletov, I. V. Lomonosov, and Yu. N. Sutulov, “Dynamic compressibility, release adiabats, and the equation of state of stilbene at high energy densities,” Tech. Phys. 50 (2), 197–201 (2005). https://doi.org/10.1134/1.1866434

    Article  Google Scholar 

  16. K. V. Khishchenko, “Equation of state for bismuth at high energy densities,” Energies 15 (19), 7067 (2022). https://doi.org/10.3390/en15197067

    Article  Google Scholar 

  17. J. M. Walsh, M. H. Rice, R. G. McQueen, and F. L. Yarger, “Shock-wave compressions of twenty-seven metals. Equations of state of metals,” Phys. Rev. 108 (2), 196–216 (1957). https://doi.org/10.1103/PhysRev.108.196

    Article  ADS  Google Scholar 

  18. K. K. Krupnikov, A. A. Bakanova, M. I. Brazhnik, and R. F. Trunin, “Investigation of shock compressibility of titanium, molybdenum, tantalum, and iron,” Dokl. Akad. Nauk SSSR 148 (6), 1302–1305 (1963) [in Russian].

    Google Scholar 

  19. R. G. McQueen, S. P. Marsh, J. W. Taylor, J. N. Fritz, and W. J. Carter, “The equation of state of solids from shock wave studies,” in High Velocity Impact Phenomena, Ed. by R. Kinslow (Academic, New York, 1970), pp. 293–417, 515–568.

    Google Scholar 

  20. LASL Shock Hugoniot Data, Ed. by S. P. Marsh (Univ. California Press, Berkeley, 1980). http://large.stanford.edu/publications/coal/references/docs/shd.pdf

  21. L. V. Al’tshuler, A. A. Bakanova, I. P. Dudoladov, E. A. Dynin, R. F. Trunin, and B. S. Chekin, “Shock adiabatic curves of metals. New data, statistical analysis, and general laws,” J. Appl. Mech. Tech. Phys. 22 (2), 145–169 (1981). https://doi.org/10.1007/BF00907938

    Article  ADS  Google Scholar 

  22. A. C. Mitchell and W. J. Nellis, “Shock compression of aluminum, copper, and tantalum,” J. Appl. Phys. 52 (5), 3363–3374 (1981). https://doi.org/10.1063/1.329160

    Article  ADS  Google Scholar 

  23. N. C. Holmes, J. A. Moriarty, G. R. Gathers, and W. J. Nellis, “The equation of state of platinum to 660 GPa (6.6 Mbar),” J. Appl. Phys. 66 (7), 2962–2967 (1989). https://doi.org/10.1063/1.344177

    Article  ADS  Google Scholar 

  24. R. F. Trunin, N. V. Panov, and A. B. Medvedev, “Compressibility of iron, aluminum, titanium, and tantalum at shock-wave pressures of 1–2.5 TPa,” JETP Lett. 62 (7), 591–594 (1995). http://jetpletters.ru/ps/1218/article_18419.pdf

    ADS  Google Scholar 

  25. R. F. Trunin, N. V. Panov, and A. B. Medvedev, “Shock compressibility of iron, aluminum and tantalum under terapascal pressures in laboratory conditions,” High Temp. 33 (2), 328–329 (1995).

    Google Scholar 

  26. R. F. Trunin, L. F. Gudarenko, M. V. Zhernokletov, and G. V. Simakov, Experimental Data on Shock Compression and Adiabatic Expansion of Condensed Matter (RFNC-VNIIEF, Sarov, 2001).

    Google Scholar 

  27. M. Yokoo, N. Kawai, K. G. Nakamura, and K. I. Kondo, “Hugoniot measurement of gold at high pressures of up to 580 GPa,” Appl. Phys. Lett. 92 (5), 051901 (2008). https://doi.org/10.1063/1.2840189

    Article  ADS  Google Scholar 

  28. M. C. Akin, J. H. Nguyen, M. A. Beckwith, R. Chau, W. P. Ambrose, O. V. Fat’yanov, P. D. Asimow, and N. C. Holmes, “Tantalum sound velocity under shock compression,” J. Appl. Phys. 125 (14), 145903 (2019). https://doi.org/10.1063/1.5054332

    Article  ADS  Google Scholar 

  29. R. F. Trunin, G. V. Simakov, Yu. N. Sutulov, A. B. Medvedev, B. D. Rogozkin, and Yu. E. Fedorov, “Compressibility of porous metals in shock waves,” Sov. Phys.-JETP 69 (3), 580–588 (1989). http://jetp.ras.ru/cgi-bin/dn/e_069_03_0580.pdf

    ADS  Google Scholar 

  30. M. V. Zhernokletov, G. V. Simakov, Yu. N. Sutulov, and R. F. Trunin, “Expansion isentropes of aluminum, iron, molybdenum, lead, and tantalum,” High Temp. 33 (1), 36–39 (1995).

    Google Scholar 

  31. W. J. Nellis, A. C. Mitchell, and D. A. Young, “Equation-of-state measurements for aluminum, copper, and tantalum in the pressure range 80–440 GPa (0.8–4.4 Mbar),” J. Appl. Phys. 93 (1), 304–310 (2003). https://doi.org/10.1063/1.1529071

    Article  ADS  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation, project no. 19-19-00713, https://rscf.ru/project/19-19-00713/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Khishchenko.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by M. Potapov

The paper is based on the report presented at the XXXVIII Fortov International Conference on Interaction of Intense Energy Fluxes with Matter (Elbrus, Kabardino-Balkaria, Russia, 2023).

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khishchenko, K.V. Equation of State for Tantalum at High Pressures in Waves of Shock Compression and Isentropic Expansion. Phys. Wave Phen. 31, 273–276 (2023). https://doi.org/10.3103/S1541308X23040052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X23040052

Keywords:

Navigation