Skip to main content
Log in

Sensitivity Enhancement of Apodized Fiber Bragg Grating for Temperature Measurement

  • INTERACTION OF RADIATION WITH MATTER
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

An apodized Fiber Bragg Grating (FBG) is designed to obtain minimal quantity of side lobes on the reflection spectrum for effective estimation of temperature sensitivity. Bare FBG cannot be implemented as a suitable option for sensing of temperature in a complex environment because it is composed of silica, which has a very low thermal expansion coefficient. Different kinds of materials having thermal expansion coefficients higher than silica are coated on designed apodized FBG to improve the sensitivity of temperature for the FBG. In this simulation work, titanium, nickel, gold, copper, silver, aluminum, lead, indium, polycarbonate, PMMA, and polyamide are coated on the apodized FBG to estimate the enhanced sensitivity for the temperature range of 25 to 75°C. The simulation results illustrated that the sensitivity of temperature for polyamide-coated FBG is highest than other coating materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. N. Sabri, S. A. Aljunid, M. S. Salim, and S. Fouad, “Fiber optic sensors: Short review and applications,” in Recent Trends in Physics of Material Science and Technology, Ed. by F. Gaol, K. Shrivastava, and J. Akhtar (Springer-Verlag, Singapore, 2015), vol. 204, pp. 299–311. https://doi.org/10.1007/978-981-287-128-2_19

  2. R. Kashyap, “Principles of optical fiber grating sensors,” in Fiber Bragg Gratings (Academic, 2010), chap. 10, pp. 441–502. https://doi.org/10.1016/b978-0-12-372579-0.00010-7

  3. D. Gatti, G. Galzerano, D. Janner, S. Longhi, and P. Laporta, “Fiber strain sensor based on a π-phase-shifted Bragg grating and the Pound-Drever-Hall technique,” Opt. Express, 16 (3), 1945–1950 (2008). https://doi.org/10.1364/OE.16.001945

    Article  ADS  Google Scholar 

  4. M.-C. Wu, R. H. Pater, and S. L. DeHaven, “Effects of coating and diametric load on fiber Bragg gratings as cryogenic temperature sensors,” Proc. SPIE 6933, 693303 (2008). https://doi.org/10.1117/12.775895

    Article  Google Scholar 

  5. C.-S. Park, K.-I. Joo, S.-W. Kang, and H.-R. Kim, “A PDMS-coated optical fiber Bragg grating sensor for enhancing temperature sensitivity,” J. Opt. Soc. Korea 15 (4), 329–334 (2011). https://doi.org/10.3807/JOSK.2011.15.4.329

    Article  Google Scholar 

  6. J. Jung, H. Nam, and B. Lee, “Fiber Bragg grating temperature sensor with controllable high sensitivity,” Proc. Conf. LEOS’98. 11th Ann. Meeting. IEEE Lasers and Electro-Opt. Soc. 1998 Ann. Meeting, Orlando, FL, USA, December 1–4, 1998 (IEEE, 1998), vol. 1, pp. 405–406. https://doi.org/10.1109/LEOS.1998.737901

  7. Y. Li, Z. Hua, F. Yan, and P. Gang, “Metal coating of fiber Bragg grating and the temperature sensing character after metallization,” Opt. Fiber Technol. 15 (4), 391–397 (2009). https://doi.org/10.1016/j.yofte.2009.05.001

    Article  ADS  Google Scholar 

  8. D. Sengupta, M. Sai Shankar, P. Saidi Reddy, R. L. N. Sai Prasad, K. S. Narayana, and P. Kishore, “An improved low temperature sensing using PMMA coated FBG,” Proc. SPIE 8311, 831103 (2011). https://doi.org/10.1117/12.904606

    Article  Google Scholar 

  9. R. Rajini-Kumar, M. Suesser, K. G. Narayankhedkar, G. Krieg, and M. D. Atrey, “Performance evaluation of metal-coated fiber Bragg grating sensors for sensing cryogenic temperature,” Cryogenics 48 (3–4), 142–147 (2008). https://doi.org/10.1016/j.cryogenics.2008.02.007

  10. C. Wen and Y. Li, “Effects of metal coating on the fiber Bragg grating temperature sensing characteristics,” J. Mod. Opt. 63 (8), 762–770 (2016). https://doi.org/10.1080/09500340.2015.1100341

    Article  ADS  Google Scholar 

  11. V. Mishra, M. Lohar, and A. Amphawan, “Improvement in temperature sensitivity of FBG by coating of different materials,” Optik 127 (2), 825–828 (2016). https://doi.org/10.1016/j.ijleo.2015.10.014

    Article  ADS  Google Scholar 

  12. P. Lu, L. Men, and Q. Chen, “Polymer-coated fiber bragg grating sensors for simultaneous monitoring of soluble analytes and temperature,” IEEE Sens. J. 9 (4), 340–345 (2009). https://doi.org/10.1109/JSEN.2009.2013499

    Article  ADS  Google Scholar 

  13. H. N. Mandal and S. Sidhishwari, “Predictive Analysis on Apodized FBG for Quasi-Distributed Temperature-Strain Sensing,” Proc. 2022 IEEE Int. Conf. on Signal Processing and Communications (SPCOM), Bangalore, India, July 1–15, 2022 (IEEE, 2022), pp. 1–5 https://doi.org/10.1109/SPCOM55316.2022.9840764

  14. S. S. A. Khan and M. S. Islam, “Determination of the best apodization function and grating length of linearly chirped fiber bragg grating for dispersion compensation,” J. Commun. 7 (11), 840–846 (2012). https://doi.org/10.4304/jcm.7.11.840-846

    Article  Google Scholar 

  15. I. Yulianti, A. S. M. Supa’at, S. M. Idrus, and M. R. S. Anwar, “Design of fiber Bragg grating-based Fabry–Perot sensor for simultaneous measurement of humidity and temperature,” Optik 124 (19), 3919–3923 (2013). https://doi.org/10.1016/j.ijleo.2012.11.043

    Article  ADS  Google Scholar 

  16. J. K. Sahota, N. Gupta, and D. Dhawan, “Fiber Bragg grating sensors for monitoring of physical parameters: A comprehensive review,” Opt. Eng. 59 (6), 060901 (2020). https://doi.org/10.1117/1.oe.59.6.060901

    Article  ADS  Google Scholar 

  17. S. Maske, P. B. Buchade, and A. D. Shaligram, “Characterization of fiber Bragg grating based on grating profile and apodization for sensor applications,” AIP Conf. Proc. 1989, 020028 (2018). https://doi.org/10.1063/1.5047704

    Article  Google Scholar 

  18. E. A. Elzahaby, I. Kandas, and M. H. Aly, “Amendment performance of an apodized tilted fiber Bragg grating for a quasi-distributed-based sensor,” Appl. Opt. 56 (19), 5480–5488 (2017). https://doi.org/10.1364/AO.56.005480

    Article  ADS  Google Scholar 

  19. F. M. Mustafa, A. F. Sayed, and M. H. Aly, “A reduced power budget and enhanced performance in a WDM system: A new FBG apodization function,” Opt. Quantum Electron. 54 (8), 471 (2022). https://doi.org/10.1007/s11082-022-03876-5

    Article  Google Scholar 

  20. K. M. M. Prabhu, Window Functions and Their Applications in Signal Processing (CRC Press, Boca Raton, 2013). https://doi.org/10.1201/9781315216386

  21. M. S. E. Djurhuus, B. Schmauss, A. T. Clausen, and D. Zibar, “Simultaneous temperature estimation of multiple gratings using a multi-layer neural network,” IEEE Photonics Technol. Lett. 32 (19), 1257–1260 (2020). https://doi.org/10.1109/LPT.2020.3019102

    Article  ADS  Google Scholar 

  22. H. N. Mandal and S. Sidhishwari, “Sensitivity analysis of designed apodized fiber Bragg grating sensor using artificial neural network and tree-based models,” Results Opt. 10, 100343 (2023). https://doi.org/10.1016/j.rio.2022.100343

    Article  Google Scholar 

  23. E. Chehura, C. C. Ye, S. E. Staines, S. W. James, and R. P. Tatam, “Characterization of the response of fibre Bragg gratings fabricated in stress and geometrically induced high birefringence fibres to temperature and transverse load,” Smart Mater. Struct. 13 (4), 888–895 (2004). https://doi.org/10.1088/0964-1726/13/4/027

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the Department of Electronics and Communication Engineering, Birla Institute of Technology Mesra, Ranchi for extending the research amenities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Himadri Nirjhar Mandal.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

The text was submitted by the author in English.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, H.N., Sidhishwari, S. Sensitivity Enhancement of Apodized Fiber Bragg Grating for Temperature Measurement. Phys. Wave Phen. 31, 252–262 (2023). https://doi.org/10.3103/S1541308X23040039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X23040039

Keywords:

Navigation