Skip to main content
Log in

Optical and Electron Microscopy of Clusters of Nd3+:LaF3 Nanoparticles Synthesized by the HTMW Method

  • OPTICAL AND MICROWAVE SPECTROSCOPY OF AQUEOUS SOLUTIONS
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

A comparative study of the sizes and spatial structure of single dielectric colloidal nanoparticles of lanthanum fluoride, doped with rare-earth neodymium ions (Nd3+:LaF3), and their conglomerates in an aqueous solution has been performed. Nanoparticles were synthesized by aqueous co-precipitation method with subsequent hydrothermal microwave (HTMW) treatment. Experiments were performed using three methods: transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and dynamic light scattering (DLS). An analysis of the results has shown that a stable colloidal solution of nanoparticles is formed during synthesis. The solution consists of single lanthanum fluoride nanoparticles, having a narrow (10–30 nm) size distribution, and nanoclusters formed on their basis. It is also shown that the spatial structure of nanoclusters cannot be described in terms of the fractal model, which is widely used to describe clusters formed in colloidal solutions of nanoparticles of various nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. A. Popov, E. Orlovskaya, A. Shaidulin, E. Vagapova, E. Timofeeva, L. Dolgov, L. Iskhakova, O. Uvarov, G. Novikov, M. Rähn, A. Tamm, A. Vanetsev, S. Fedorenko, S. Eliseeva, S. Petoud, and Y. Orlovskii, “Stable aqueous colloidal solutions of Nd3+:LaF3 nanoparticles, promising for luminescent bioimaging in the near-infrared spectral range,” Nanomaterials 11 (11), 2847 (2021). https://doi.org/10.3390/nano11112847

    Article  Google Scholar 

  2. Y. Orlovskii, A. Popov, E. Orlovskaya, A. Vanetsev, E. Vagapova, M. Rähn, V. Sammelselg, I. Sildos, A. Baranchikov, P. Grachev, V. Loschenov, and A. Ryabova, “Comparison of concentration dependence of relative fluorescence quantum yield and brightness in first biological window of wavelengths for aqueous colloidal solutions of Nd3+:LaF3 and Nd3+:KY3F10 nanocrystals synthesized by microwave-hydrothermal treatment,” J. Alloys Compd. 756, 182–192 (2018). https://doi.org/10.1016/j.jallcom.2018.05.027

    Article  Google Scholar 

  3. Y. Yang, J. Aw, and B. Xing, “Nanostructures for NIR light-controlled therapies,” Nanoscale 9 (11), 3698–3718 (2017). https://doi.org/10.1039/C6NR09177F

    Article  Google Scholar 

  4. B. del Rosal, A. Pérez-Delgado, M. Misiak, A. Bednarkiewicz, A. S. Vanetsev, Yu. Orlovskii, D. J. Jovanović, M. D. Dramićanin, U. Rocha, K. U. Kumar, C. Jacinto, E. Navarro, E. M. Rodríguez, M. Pedroni, A. Speghini, G. A. Hirata, I. R. Martín, and D. Jaque, “Neodymium-doped nanoparticles for infrared fluorescence bioimaging: The role of the host,” J. Appl. Phys. 118 (14), 143104 (2015). https://doi.org/10.1063/1.4932669

    Article  ADS  Google Scholar 

  5. D. H. Ortgies, F. J. Teran, U. Rocha, L. de la Cueva, G. Salas, D. Cabrera, A. S. Vanetsev, M. Rähn, V. Sammelselg, Yu. V. Orlovskii, and D. Jaque, “Optomagnetic nanoplatforms for in situ controlled hyperthermia,” Adv. Funct. Mater. 28 (11), 1704434 (2018). https://doi.org/10.1002/adfm.201704434

    Article  Google Scholar 

  6. U. Rocha, J. Hu, E. M. Rodríguez, A. S. Vanetsev, M. Rähn, V. Sammelselg, Yu. V. Orlovskii, J. G. Solé, D. Jaque, and D. H. Ortgies, “Subtissue imaging and thermal monitoring of gold nanorods through joined encapsulation with Nd-doped infrared-emitting nanoparticles,” Small 12 (39), 5394–5400 (2016). https://doi.org/10.1002/smll.201600866

    Article  Google Scholar 

  7. P. Hole, “Particle tracking analysis (PTA),” in Characterization of Nanoparticles: Measurement Processes for Nanoparticles, Ed. by V.-D. Hodoroaba, W. E. S. Unger, and A. G. Shard (Elsevier, Amsterdam, 2020), Chap. 3.1.2, pp. 79–96. https://doi.org/10.1016/b978-0-12-814182-3.00007-9

  8. J. Stetefeld, S. A. McKenna, and T. R. Patel, “Dynamic light scattering: A practical guide and applications in biomedical sciences,” Biophys. Rev. 8, 409–427 (2016). https://doi.org/10.1007/s12551-016-0218-6

    Article  Google Scholar 

  9. V. Filipe, A. Hawe, and W. Jiskoot, “Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates,” Pharm. Res. 27 (5), 796–810 (2010). https://doi.org/10.1007/s11095-010-0073-2

    Article  Google Scholar 

  10. E. Timofeeva, E. Orlovskaya, A. Popov, A. Shaidulin, S. Kuznetsov, A. Alexandrov, O. Uvarov, Y. Vainer, G. Silaev, M. Rähn, A. Tamm, S. Fedorenko, and Y. Orlovskii, “The influence of medium on fluorescence quenching of colloidal solutions of the Nd3+:LaF3 nanoparticles prepared with HTMW treatment,” Nanomaterials 12 (21), 3749 (2022). https://doi.org/10.3390/nano12213749

    Article  Google Scholar 

  11. L. Scriven, “Physics and applications of DIP coating and spin coating,” MRS Proc. 121, 717–729 (1988). https://doi.org/10.1557/PROC-121-717

  12. J. Goodman, “Some fundamental properties of speckle,” J. Opt. Soc. Am. 66 (11), 1145–1150 (1976). https://doi.org/10.1364/JOSA.66.001145

    Article  ADS  Google Scholar 

  13. C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9, 671–675 (2012). https://doi.org/10.1038/nmeth.2089

    Article  Google Scholar 

  14. J.-Y. Tinevez, N. Perry, J. Schindelin, G. M. Hoopes, G. D. Reynolds, E. Laplantine, S. Y. Bednarek, S. L. Shorte, and K. W. Eliceiri, “TrackMate: An open and extensible platform for single-particle tracking,” Methods 115, 80–90 (2017). https://doi.org/10.1016/j.ymeth.2016.09.016

    Article  Google Scholar 

  15. C. L. Vestergaard, P. C. Blainey, and H. Flyvbjerg, “Optimal estimation of diffusion coefficients from single-particle trajectories,” Phys. Rev. E 89 (2), 022726 (2014). https://doi.org/10.1103/PhysRevE.89.022726

    Article  ADS  Google Scholar 

  16. T. Wagner, H.-G. Lipinski, and M. Wiemann, “Dark field nanoparticle tracking analysis for size characterization of plasmonic and non-plasmonic particles,” J. Nanopart. Res. 16 (5), 2419 (2014). https://doi.org/10.1007/s11051-014-2419-x

    Article  ADS  Google Scholar 

  17. M. Altenhoff, S. Aßmann, C. Teige, F. J. Huber, and S. Will, “An optimized evaluation strategy for a comprehensive morphological soot nanoparticle aggregate characterization by electron microscopy,” J. Aerosol Sci. 139, 105470 (2020). https://doi.org/10.1016/j.jaerosci.2019.105470

    Article  ADS  Google Scholar 

  18. Ü. Ö. Köylü, G. M. Faeth, T. L. Farias, and M. G. Carvalho, “Fractal and projected structure properties of soot aggregates,” Combust. Flame 100 (4), 621–633 (1995). https://doi.org/10.1016/0010-2180(94)00147-K

    Article  Google Scholar 

  19. W. Burchard, “Solution properties of branched macromolecules,” in Branched Polymers II: Advances in Polymer Science, Ed. by J. Roovers (Springer, Berlin–Heidelberg, 1999), Vol. 143, pp. 113–194. https://doi.org/10.1007/3-540-49780-3_3

  20. S. Kadlubowski, “Radiation-induced synthesis of nanogels based on poly(N-vinyl-2-pyrrolidone)—A review,” Radiat. Phys. Chem. 102, 29–39 (2014). https://doi.org/10.1016/j.radphyschem.2014.04.016

    Article  ADS  Google Scholar 

  21. M. Lattuada, H. Wu, and M. Morbidelli, “Hydrodynamic radius of fractal clusters,” J. Colloid Interface Sci. 268 (1), 96–105 (2003). https://doi.org/10.1016/j.jcis.2003.07.028

    Article  ADS  Google Scholar 

  22. A. M. Brasil, T. L. Farias, and M. G. Carvalho, “A recipe for image characterization of fractal-like aggregates,” J. Aerosol Sci. 30 (10), 1379–1389 (1999). https://doi.org/10.1016/S0021-8502(99)00026-9

    Article  ADS  Google Scholar 

  23. C. M. Sorensen, “Light scattering by fractal aggregates: A review,” Aerosol Sci. Technol. 35 (2), 648–687 (2001). https://doi.org/10.1080/02786820117868

    Article  ADS  Google Scholar 

  24. H. Wu, M. Lattuada, and M. Morbidelli, “Dependence of fractal dimension of DLCA clusters on size of primary particles,” Adv. Colloid Interface Sci. 195196, 41–49 (2013). https://doi.org/10.1016/j.cis.2013.04.001

  25. L. Ehrl, M. Soos, and M. Lattuada, “Generation and geometrical analysis of dense clusters with variable fractal dimension,” J. Phys. Chem. B 113 (31), 10587–10599 (2009). https://doi.org/10.1021/jp903557m

    Article  Google Scholar 

  26. S. Lazzari, L. Nicoud, B. Jaquet, M. Lattuada, and M. Morbidelli, “Fractal-like structures in colloid science,” Adv. Colloid Interface Sci. 235, 1–13 (2016). https://doi.org/10.1016/j.cis.2016.05.002

    Article  Google Scholar 

  27. E. Hotze, T. Phenrat, and G. Lowry, “Nanoparticle aggregation: Challenges to understanding transport and reactivity in the environment,” J. Environ. Qual. 39 (6), 1909–1924 (2010). https://doi.org/10.2134/jeq2009.0462

    Article  Google Scholar 

Download references

Funding

Synthesis of lanthanum fluoride nanoparticles and the studies using laser dark-field microscopy and electron transmission microscopy were supported by the Russian Science Foundation, grant no. 22-22-00998. The development of the method for synthesizing lanthanum fluoride nanoparticles was supported by the Estonian Research Council, grant no. PRG347.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. G. Vainer.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Sin’kov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silaev, G.O., Krasheninnikov, V.N., Shaidulin, A.T. et al. Optical and Electron Microscopy of Clusters of Nd3+:LaF3 Nanoparticles Synthesized by the HTMW Method. Phys. Wave Phen. 31, 160–170 (2023). https://doi.org/10.3103/S1541308X23030093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X23030093

Keywords:

Navigation