Skip to main content
Log in

Plasmonic Resonance of Low-Frequency Stimulated Raman Scattering during Water Optical Breakdown

  • OPTICAL AND MICROWAVE SPECTROSCOPY OF AQUEOUS SOLUTIONS
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

Experiments on time-dependent stimulated Raman scattering (SRS) and optical breakdown in the field of a picosecond laser pulse were performed with water samples containing gas nanobubbles (bubstons) with different concentrations. It is found that an optical breakdown in water contacting with atmosphere for a long time leads to the occurrence of an anomalously strong low-frequency SRS line at a frequency of ≈700 cm–1; its intensity significantly exceeds that of the SRS line at the frequency ≈3410 cm–1, which is due to the O–H stretching vibration of water molecules. A hypothesis about generation of a resonant plasmon during bubston breakdown in water was proposed to explain the observed effect. It is shown that the resonant plasmon was excited due to the pump wave beating and low-frequency Stokes scattering wave, shifted by the frequency of librational vibration of water molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. M. Alheshibri, J. Qian, M. Jehannin, and V. S. J. Craig, “A history of nanobubbles,” Langmuir 32 (43), 11086–11100 (2016). https://doi.org/10.1021/acs.langmuir.6b02489

    Article  Google Scholar 

  2. P. S. Epstein and M. S. Plesset, “On the stability of gas bubbles in liquid-gas solutions,” J. Chem. Phys. 18 (11), 1505–1509 (1950). https://doi.org/10.1063/1.1747520

    Article  ADS  Google Scholar 

  3. S. Ljunggren and J. C. Eriksson, “The lifetime of a colloid-sized gas bubble in water and the cause of the hydrophobic attraction,” Colloids Surf., A 129130, 151–155 (1997). https://doi.org/10.1016/S0927-7757(97)00033-2

  4. N. F. Bunkin and F. V. Bunkin, “Bubston structure of water and aqueous solutions of electrolytes,” Phys. Wave Phenom. 21 (2), 81–109 (2013). https://doi.org/10.3103/S1541308X13020015

    Article  ADS  Google Scholar 

  5. S. O. Yurchenko, A. V. Shkirin, B. W. Ninham, A. A. Sychev, V. A. Babenko, N. V. Penkov, N. P. Kryuchkov, and N. F. Bunkin, “Ion-specific and thermal effects in the stabilization of the gas nanobubble phase in bulk aqueous electrolyte solutions,” Langmuir 32 (43), 11245–11255 (2016). https://doi.org/10.1021/acs.langmuir.6b01644

    Article  Google Scholar 

  6. G. H. Kelsall, S. Tang, S. Yurdakul, and A. L. Smith, “Electrophoretic behaviour of bubbles in aqueous electrolytes,” J. Chem. Soc., Faraday Trans. 92 (20), 3887–3893 (1996). https://doi.org/10.1039/FT9969203887

    Article  Google Scholar 

  7. N. F. Bunkin, A. V. Shkirin, N. V. Suyazov, V. A. Babenko, A. A. Sychev, N. V. Penkov, K. N. Belosludtsev, and S. V. Gudkov, “Formation and dynamics of ion-stabilized gas nanobubble phase in the bulk of aqueous NaCl solutions,” J. Phys. Chem. B 120 (7), 1291–1303 (2016). https://doi.org/10.1021/acs.jpcb.5b11103

    Article  Google Scholar 

  8. N. F. Bunkin and F. V. Bunkin, “The new concepts in the optical breakdown of transparent liquids,” Laser Phys. 3 (1), 63–78 (1993). https://elibrary.ru/item.asp?id=28338540

    Google Scholar 

  9. P. Vanraes and A. Bogaerts, “Plasma physics of liquids—A focused review,” Appl. Phys. Rev. 5 (3), 031103 (2018). https://doi.org/10.1063/1.5020511

    Article  ADS  Google Scholar 

  10. O. Rahn, M. Maier, and W. Kaiser, “Stimulated raman, librational, and brillouin scattering in water,” Opt. Commun. 1 (3), 109–110 (1969). https://doi.org/10.1016/0030-4018(69)90022-4

    Article  ADS  Google Scholar 

  11. H. Frostig, O. Katz, A. Natan, and Y. Silberberg, “Single-pulse stimulated Raman scattering spectroscopy,” Opt. Lett. 36 (7), 1248–1250 (2011). https://doi.org/10.1364/OL.36.001248

    Article  ADS  Google Scholar 

  12. V. A. Babenko and A. A. Sychev, “Ultrashort-pulse generation in a passive-mode-locked YAG:Nd laser by means of the resonator-loss-unloading method,” J. Russ. Laser Res. 20 (5), 478–487 (1999). https://doi.org/10.1007/BF02508912

    Article  Google Scholar 

  13. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).

    Google Scholar 

  14. M. Sceats, S. A. Rice, and J. E. Butler, “The stimulated Raman spectrum of water and its relationship to liquid structure,” J. Chem. Phys. 63 (12), 5390–5400 (1975). https://doi.org/10.1063/1.431345

    Article  ADS  Google Scholar 

  15. J. Workman, Jr. and L. Weyer, Practical Guide and Spectral Atlas for Interpretive Near-Infrared Spectroscopy (CRC Press, Boca Raton, 2012).

    Book  Google Scholar 

  16. Handbook of Vibrational Spectroscopy, Ed. by J. M. Chalmers and P. R. Griffiths (Wiley, Chichester, 2002), Vol. 1.

    Google Scholar 

  17. Surface Enhanced Raman Scattering, Ed. by R. Chang and T. Furtak (Plenum, New York, 1982).

    Google Scholar 

  18. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275 (5303), 1102–1106 (1997). https://doi.org/10.1126/science.275.5303.1102

    Article  Google Scholar 

  19. Yu. P. Raizer, Gas Discharge Physics (Springer, Berlin–Heidelberg, 1991). https://doi.org/10.1201/9780203739075

  20. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998). https://doi.org/10.1002/9783527618156

  21. A. Angulo-Sherman and H. Mercado-Uribe, “Dielectric spectroscopy of water at low frequencies: The existence of an isopermitive point,” Chem. Phys. Lett. 503 (4–6), 327–330 (2011). https://doi.org/10.1016/j.cplett.2011.01.027

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. F. Bunkin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Sin’kov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babenko, V.A., Bunkin, N.F. & Sychev, A.A. Plasmonic Resonance of Low-Frequency Stimulated Raman Scattering during Water Optical Breakdown. Phys. Wave Phen. 31, 180–188 (2023). https://doi.org/10.3103/S1541308X23030032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X23030032

Keywords:

Navigation