Skip to main content
Log in

Influence of the Vibration Impact Mode on the Spontaneous Chemiluminescence of Aqueous Protein Solutions

  • METHODS FOR CONTROLLING THE PHYSICAL PROPERTIES OF AQUEOUS SOLUTIONS
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

A characteristic feature of water and aqueous solutions is spontaneous chemiluminescence. Previously we have discovered the phenomenon of activation of the spontaneous chemiluminescence of water during shaking, with subsequent decreasing chemiluminescence intensity and reaching a stationary level. It is unclear how spontaneous chemiluminescence of water depends on the shaking conditions. It is also of interest how such physical factors as mechanical shaking or alternating magnetic field may affect the chemiluminescence in solutions with biological objects, for example, in aqueous protein solutions. In this study we investigated the dependence of the spontaneous chemiluminescence of bovine serum albumin solution on the mechanical impact conditions (frequency, amplitude, and duration), as well as the influence of ac magnetic field on the spontaneous chemiluminescence of immunoglobulin G solution. In the case of albumin solution a vibration impact with an amplitude of 12 mm caused a decrease in the chemiluminescence intensity in comparison with a control albumin sample, which was not exposed to vibrations. The severity of the effect was independent of the time and frequency of the vibration impact. Shaking with a frequency of 30 Hz and an amplitude of 2.3 mm increased the average chemiluminescence intensity. Spontaneous chemiluminescence of water depends to a greater extent on the amplitude and duration of the mechanical impact rather than on its frequency. The chemiluminescence intensity of a bovine serum albumin solution with a concentration of 1 mg/mL decreased in comparison with the check sample in all shaking modes. The most pronounced effects were observed for an amplitude of 12 mm and/or a frequency of 30 Hz. Time dependence was observed for the mode with an amplitude of 12 mm and a frequency of 30 Hz. Therefore, the spontaneous chemiluminescence of aqueous protein solutions depends to a greater extent on the amplitude and vibration frequency and to a lesser extent on the impact duration. The influence of ac magnetic field on the physical characteristics of water is described. We found that the magnetic field did not affect the water chemiluminescence parameters but changed the intensity and RMS deviation of the chemiluminescence intensity of IgG aqueous solutions. The effect severity depended on both the frequency of applied ac magnetic field and on the protein concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. I. A. Shcherbakov, “Current trends in the studies of aqueous solutions,” Phys. Wave Phenom. 30 (3), 129–134 (2022). https://doi.org/10.3103/S1541308X22030104

    Article  ADS  Google Scholar 

  2. N. Penkov, “Antibodies processed using high dilution technology distantly change structural properties of IFNγ aqueous solution,” Pharmaceutics 13 (11), 1864 (2021). https://doi.org/10.3390/pharmaceutics13111864

    Article  Google Scholar 

  3. A. V. Shishkina, A. A. Ksenofontov, N. V. Penkov, and M. V. Vener, “Diclofenac ion hydration: Experimental and theoretical search for anion pairs,” Molecules 27 (10), 3350 (2022). https://doi.org/10.3390/molecules27103350

    Article  Google Scholar 

  4. G. Metreveli, A. Philippe, and G. E. Schaumann, “Disaggregation of silver nanoparticle homoaggregates in a river water matrix,” Sci. Total Environ. 535, 35–44 (2015). https://doi.org/10.1016/j.scitotenv.2014.11.058

    Article  ADS  Google Scholar 

  5. N. F. Bunkin, A. V. Shkirin, B. W. Ninham, S. N. Chirikov, L. L. Chaikov, N. V. Penkov, V. A. Kozlov, and S. V. Gudkov, “Shaking-induced aggregation and flotation in immunoglobulin dispersions: Differences between water and water-ethanol mixtures,” ACS Omega 5 (24), 14689–14701 (2020). https://doi.org/10.1021/acsomega.0c01444

    Article  Google Scholar 

  6. S. Kiese, A. Papppenberger, W. Friess, and H.-C. Mahler, “Shaken, not stirred: Mechanical stress testing of an IgG1 antibody,” J. Pharm. Sci. 97 (10), 4347–4366 (2008). https://doi.org/10.1002/jps.21328

    Article  Google Scholar 

  7. Q. Zhang and F. Saito, “A review on mechanochemical syntheses of functional materials,” Adv. Powder Technol. 23 (5), 523–531 (2012). https://doi.org/10.1016/j.apt.2012.05.002

    Article  Google Scholar 

  8. I. A. Shcherbakov, “Influence of external impacts on the properties of aqueous solutions,” Phys. Wave Phenom. 29 (2), 89–93 (2021). https://doi.org/10.3103/S1541308X21020114

    Article  ADS  Google Scholar 

  9. V. I. Bruskov, Zh. K. Masalimov, and A. V. Chernikov, “Heat-induced generation of reactive oxygen species during reduction of dissolved air oxygen,” Dokl. Biol. Sci. 381 (1–6), 586–588 (2001). https://doi.org/10.1023/A:1013394909264

  10. G. A. Lyakhov, V. I. Man’ko, N. V. Suyazov, I. A. Shcherbakov, and M. A. Shermeneva, “Physical mechanisms of activation of radical reactions in aqueous solutions under mechanical and magnetic effect: Problem of singlet oxygen,” Phys. Wave Phenom. 30 (3), 174–181 (2022). https://doi.org/10.3103/S1541308X22030050

    Article  ADS  Google Scholar 

  11. T. H. Fereja, A. Hymete, and T. Gunasekaran, “A recent review on chemiluminescence reaction, principle and application on pharmaceutical analysis,” ISRN Spectrosc. 2013, 230858 (2013). https://doi.org/10.1155/2013/230858

    Article  Google Scholar 

  12. L. Bøtter-Jensen, “Luminescence techniques: Instrumentation and methods,” Radiat. Meas. 27 (5–6), 749–768 (1997). https://doi.org/10.1016/S1350-4487(97)00206-0

  13. R.-J. Xie, Y. Q. Li, N. Hirosaki, and H. Yamamoto, Nitride Phosphors and Solid-State Lighting (CRC Press, Boca Raton, 2011). https://doi.org/10.1201/b10939

  14. S. V. Gudkov, N. V. Penkov, I. V. Baimler, G. A. Lyakhov, V. I. Pustovoy, A. V. Simakin, R. M. Sarimov, and I. A. Scherbakov, “Effect of mechanical shaking on the physicochemical properties of aqueous solutions,” Int. J. Mol. Sci. 21 (21), 8033 (2020). https://doi.org/10.3390/ijms21218033

    Article  Google Scholar 

  15. Y. Wang, H. Wei, and Z. Li, “Effect of magnetic field on the physical properties of water,” Results Phys. 8, 262–267 (2018). https://doi.org/10.1016/j.rinp.2017.12.022

    Article  ADS  Google Scholar 

  16. S. V. Gudkov, V. I. Bruskov, M. E. Astashev, A. V. Chernikov, L. S. Yaguzhinsky, and S. D. Zakharov, “Oxygen-dependent auto-oscillations of water luminescence triggered by the 1264 nm radiation,” J. Phys. Chem. B 115 (23), 7693–7698 (2011). https://doi.org/10.1021/jp2023154

    Article  Google Scholar 

  17. C. Acuña, Y. T. A. Mier, M. O. Kokornaczyk, S. Baumgartner, and M. Castelán, “Deep learning applied to analyze patterns from evaporated droplets of Viscum album extracts,” Sci. Rep. 12, 15332 (2022). https://doi.org/10.1038/s41598-022-19217-1

    Article  ADS  Google Scholar 

  18. A. G. Emelianova, N. V. Petrova, Ch. Fremez, M. Fontanié, S. A. Tarasov, and O. I. Epstein, “Therapeutic potential of highly diluted antibodies in antibiotic-resistant infection,” Eur. J. Pharm. Sci. 173, 106161 (2022). https://doi.org/10.1016/j.ejps.2022.106161

    Article  Google Scholar 

  19. A. Luna, J. Meisel, K. Hsu, S. Russi, and D. Fernandez, “Protein structural changes on a CubeSat under rocket acceleration profile,” npj Microgravity 6, 12 (2020). https://doi.org/10.1038/s41526-020-0102-3

  20. V. I. Bruskov, S. V. Gudkov, S. F. Chalkin, E. G. Smirnova, and L. S. Yaguzhinskii, “Self-oscillating water luminescence induced by laser irradiation,” Dokl. Biochem. Biophys. 425, 114–116 (2009). https://doi.org/10.1134/s160767290902015x

    Article  Google Scholar 

  21. Y. Miura, S. Honda, A. Masuda, and T. Masuda, “Antioxidant activities of cysteine derivatives against lipid oxidation in anhydrous media,” Biosci., Biotechnol., Biochem. 78 (8), 1452–1455 (2014). https://doi.org/10.1080/09168451.2014.918496

    Article  Google Scholar 

  22. E. B. León-Espinosa, G. Calderón-Domínguez, M. García-Garibay, M. Díaz-Ramírez, R. G. Cruz-Monterrosa, R. Ruiz-Hernández, R. V. Pérez-Ruiz, and J. Jiménez-Guzmán, “Evaluation of the antioxidant activity from bovine serum albumin protein fractions,” Agro Productividad 5 (2021). https://doi.org/10.32854/agrop.v14i9.2149

  23. B. D’Autréaux and M. B. Toledano, “ROS as signalling molecules: Mechanisms that generate specificity in ROS homeostasis,” Nat. Rev. Mol. Cell Biol. 8, 813–824 (2007). https://doi.org/10.1038/nrm2256

    Article  Google Scholar 

  24. K. Brieger, S. Schiavone, F. J. Miller, Jr., and K.-H. Krause, “Reactive oxygen species: From health to disease,” Swiss Med. Wkly. 142 (3334), w13659 (2012). https://doi.org/10.4414/smw.2012.13659

    Article  Google Scholar 

  25. A. M. Wegner and D. R. Haudenschild, “NADPH oxidases in bone and cartilage homeostasis and disease: A promising therapeutic target,” J. Orthop. Res. 38 (10), 2104–2112 (2020). https://doi.org/10.1002/jor.24693

    Article  Google Scholar 

  26. E. R. Stadtman and B. S. Berlett, “Reactive oxygen-mediated protein oxidation in aging and disease,” Chem. Res. Toxicol. 10 (5), 485–494 (1997). https://doi.org/10.1021/tx960133r

    Article  Google Scholar 

  27. P. P. Fu, Q. Xia, H.-M. Hwang, P. C. Ray, and H. Yu, “Mechanisms of nanotoxicity: Generation of reactive oxygen species,” J. Food Drug Anal. 22 (1), 64–75 (2014). https://doi.org/10.1016/j.jfda.2014.01.005

    Article  Google Scholar 

  28. I. A. Shcherbakov, I. V. Baimler, G. A. Lyakhov, G. N. Mikhailova, V. I. Pustovoy, R. M. Sarimov, A. V. Simakin, and A. V. Troitsky, “Influence of a constant magnetic field on some properties of water solutions,” Dokl. Phys. 65 (8), 273–275 (2020). https://doi.org/10.1134/S1028335820080078

    Article  ADS  Google Scholar 

  29. E. B. Menshchikova, P. M. Kozhin, A. V. Chechushkov, M. V. Khrapova, and N. K. Zenkov, “The oral delivery of water-soluble phenol TS-13 ameliorates granuloma formation in an in vivo model of tuberculous granulomatous inflammation,” Oxid. Med. Cell. Longevity 2021, 6652775 (2021). https://doi.org/10.1155/2021/6652775

    Article  Google Scholar 

  30. J. Cadet, T. Douki, D. Gasparutto, and J.-L. Ravanat, “Oxidative damage to DNA: Formation, measurement and biochemical features,” Mutat. Res./Fundam. Mol. Mech. Mutagen. 531 (1–2), 5–23 (2003). https://doi.org/10.1016/j.mrfmmm.2003.09.001

  31. I. G. Popovich, B. O. Voitenkov, V. N. Anisimov, V. T. Ivanov, I. I. Mikhaleva, M. A. Zabezhinski, I. N. Alimova, D. A. Baturin, N. Y. Zavarzina, S. V. Rosenfeld, A. V. Semenchenko, and A. I. Yashin, “Effect of delta-sleep inducing peptide-containing preparation Deltaran on biomarkers of aging, life span and spontaneous tumor incidence in female SHR mice,” Mech. Ageing Dev. 124, 721–731 (2003). https://doi.org/10.1016/S0047-6374(03)00082-4

    Article  Google Scholar 

  32. M. Premanathan, K. Karthikeyan, K. Jeyasubramanian, and G. Manivannan, “Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation,” Nanomed.: Nanotechnol., Biol., Med. 7 (2), 184–192 (2011). https://doi.org/10.1016/j.nano.2010.10.001

    Article  Google Scholar 

  33. J. E. Klaunig, L. M. Kamendulis, and B. A. Hocevar, “Oxidative stress and oxidative damage in carcinogenesis,” Toxicol. Pathol. 38, 96–109 (2009). https://doi.org/10.1177/0192623309356453

    Article  Google Scholar 

  34. H. F. Poon, V. Calabrese, G. Scapagnini, and D. A. Butterfield, “Free radicals and brain aging,” Clin. Geriatr. Med. 20 (2), 329–359 (2004). https://doi.org/10.1016/j.cger.2004.02.005

    Article  Google Scholar 

  35. M. Valko, C. J. Rhodes, J. Moncol, M. Izakovic, and M. Mazur, “Free radicals, metals and antioxidants in oxidative stress-induced cancer,” Chem.-Biol. Int. 160 (1), 1–40 (2006). https://doi.org/10.1016/j.cbi.2005.12.009

    Article  Google Scholar 

  36. T. Senoner and W. Dichtl, “Oxidative stress in cardiovascular diseases: Still a therapeutic target?” Nutrients 11 (9), 2090 (2019). https://doi.org/10.3390/nu11092090

    Article  Google Scholar 

  37. P. R. Angelova, M. L. Choi, A. V. Berezhnov, M. H. Horrocks, C. D. Hughes, S. De, M. Rodrigues, R. Yapom, D. Little, K. S. Dolt, T. Kunath, M. J. Devine, P. Gissen, M. S. Shchepinov, S. Sylantyev, E. V. Pavlov, D. Klenerman, A. Y. Abramov, and S. Gandhi, “Alpha synuclein aggregation drives ferroptosis: An interplay of iron, calcium and lipid peroxidation,” Cell Death Differ. 27, 2781–2796 (2020). https://doi.org/10.1038/s41418-020-0542-z

    Article  Google Scholar 

  38. S. G. Sokolovski, S. A. Zolotovskaya, A. Goltsov, C. Pourreyron, A. P. South, and E. U. Rafailov, “Infrared laser pulse triggers increased singlet oxygen production in tumour cells,” Sci. Rep. 3, 3484 (2013). https://doi.org/10.1038/srep03484

    Article  ADS  Google Scholar 

  39. M. E. Bulina, D. M. Chudakov, O. V. Britanova, Y. G. Yanushevich, D. B. Staroverov, T. V. Chepurnykh, E. M. Merzlyak, M. A. Shkrob, S. Lukyanov, and K. A. Lukyanov, “A genetically encoded photosensitizer,” Nat. Biotechnol. 24, 95–99 (2006). https://doi.org/10.1038/nbt1175

    Article  Google Scholar 

  40. T. I. Grushina, and I. I. Orlov, “Shock wave therapy in oncology: In vitro, in vivo, rehabilitation,” Vopr. Kurortol., Fizioter., Lech. Fiz. Kult. 99 (3), 58–65 (2022) [in Russian]. https://doi.org/10.17116/kurort20229903158

  41. R. Crevenna, M. Mickel, and M. Keilani, “Extracorporeal shock wave therapy in the supportive care and rehabilitation of cancer patients,” Supportive Care Cancer 27, 4039–4041 (2019). https://doi.org/10.1007/s00520-019-05046-y

    Article  Google Scholar 

  42. M. Blank, “Protein and DNA reactions stimulated by electromagnetic fields,” Electromagn. Biol. Med. 27 (1), 3–23 (2008). https://doi.org/10.1080/15368370701878820

    Article  Google Scholar 

Download references

Funding

This research was funded by the Russian Science Foundation, grant no. 22-22-00951, https://rscf.ru/en/project/22-22-00951/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Astashev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Sin’kov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Astashev, M.E., Serov, D.A., Sarimov, R.M. et al. Influence of the Vibration Impact Mode on the Spontaneous Chemiluminescence of Aqueous Protein Solutions. Phys. Wave Phen. 31, 189–199 (2023). https://doi.org/10.3103/S1541308X23030020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X23030020

Keywords:

Navigation