Skip to main content
Log in

Laser Plasma on Metal Target Surface as a Source of Vacuum UV Radiation for Ionizing Organic Molecules in Mass Spectroscopy

  • LASER PLASMA SPECTROSCOPY
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

Pulsed vacuum ultraviolet (VUV) radiation (80–180 nm) emitted by laser plasma produced on a metal target is used in mass spectrometry to ionize volatile organic compounds at atmospheric pressure. The parameters of light emitted by the laser plasma generated by a pulsed Nd:YAG laser radiation at a wavelength of 1064 nm, power density of about 70 GW/cm2, and pulse energy of 250 µJ have been determined using emission spectroscopy. During the first several nanoseconds, the plasma emission spectrum does not contain any pronounced spectral lines and can be described as the emission spectrum of a blackbody with a temperature of 5.5 × 104–105 K (the temperature depends on the ambient gas pressure). This radiation provides ionization of water, oxygen, and nitrogen molecules, as well as argon atoms. It is shown that the mechanisms of ionization of organic compounds under VUV irradiation in argon are based on the reaction of proton transfer from ionized water molecules and reactions of organic compounds with oxygen ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. A. Wieser, L. Schneider, J. Jung, and S. Schubert, “MALDI-TOF MS in microbiological diagnostics – identification of microorganisms and beyond (mini review),” Appl. Microbiol. Biotechnol. 93 (3), 965–974 (2012). https://doi.org/10.1007/s00253-011-3783-4

    Article  Google Scholar 

  2. Y. Y. Broza, P. Mochalski, V. Ruzsanyi, A. Amann, and H. Haick, “Hybrid volatolomics and disease detection,” Angew. Chem. Int. Ed. 54 (38), 11036–11048 (2015). https://doi.org/10.1002/anie.201500153

    Article  Google Scholar 

  3. A. Amann, B. de Lacy Costello, W. Miekisch, J. Schubert, B. Buszewski, J. Pleil, N. Ratcliffe, and T. Risby, “The human volatilome: Volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva,” J. Breath Res. 8 (3), 034001 (2014). https://doi.org/10.1088/1752-7155/8/3/034001

    Article  ADS  Google Scholar 

  4. A. V. Pento, S. M. Nikiforov, Ya. O. Simanovsky, A. A. Grechnikov, and S. S. Alimpiev, “Laser ablation and ionisation by laser plasma radiation in the atmospheric-pressure mass spectrometry of organic compounds,” Quantum Electron. 43 (1), 55–59 (2013). https://doi.org/10.1070/QE2013v043n01ABEH015065

    Article  ADS  Google Scholar 

  5. Troitsk Research and Development Center, “XWS-65 Broadband Plasma Radiation Source”. http://trdc.com/ ?page_id=469 (Accessed November 2, 2020).

  6. V. A. Labusov, S. S. Boldova, D. O. Selunin, Z. V. Semenov, P. V. Vashchenko, and S. A. Babin, “High-resolution continuum-source electrothermal atomic absorption spectrometer for simultaneous multi-element determination in the spectral range of 190–780 nm,” J. Anal. At. Spectrom. 34 (5), 1005–1010 (2019). https://doi.org/10.1039/C8JA00432

    Article  Google Scholar 

  7. A. Borgheseand and S. S. Merola, “Time-resolved spectral and spatial description of laser-induced breakdown in air as a pulsed, bright, and broadband ultraviolet–visible light source,” Appl. Opt. 37 (18), 3977–3983 (1998). https://doi.org/10.1364/AO.37.003977

    Article  ADS  Google Scholar 

  8. H. C. Liu, X. L. Mao, J. H. Yoo, and R. E. Russo, “Early phase laser induced plasma diagnostics and mass removal during single-pulse laser ablation of silicon,” Spectrochim. Acta, Part B. 54 (11), 1607–1624 (1999). https://doi.org/10.1016/S0584-8547(99)00092-0

    Article  ADS  Google Scholar 

  9. N. Farid, S. S. Harilal, H. Ding, and A. Hassanein, “Emission features and expansion dynamics of nanosecond laser ablation plumes at different ambient pressures,” J. Appl. Phys. 115 (3), 033107 (2014). https://doi.org/10.1063/1.4862167

    Article  ADS  Google Scholar 

  10. S. S. Alimpiev, A. A. Grechnikov, and S. M. Nikiforov, “New approaches to the laser mass spectrometry of organic samples,” Phys.-Usp. 58 (2), 191–195 (2015). https://doi.org/10.3367/UFNe.0185.201502f.0207

    Article  ADS  Google Scholar 

  11. A. Bierstedt and J. Riedel, “Airborne laser-spark for ambient desorption/ionization,” Eur. J. Mass Spectrom. 22 (3), 105–114 (2016). https://doi.org/10.1255/ejms.1417

    Article  Google Scholar 

  12. A. Bierstedt, H. Kersten, R. Glaus, I. Gornushkin, U. Panne, and J. Riedel, “Characterization of an airborne laser-spark ion source for ambient mass spectrometry,” Anal. Chem. 89 (6), 3437–3444 (2017). https://doi.org/10.1021/acs.analchem.6b04178

    Article  Google Scholar 

  13. V. S. Vorob’ev, “Plasma arising during the interaction of laser radiation with solids,” Phys.-Usp. 36 (12), 1129–1157 (1993). https://doi.org/10.1070/PU1993v036n12ABEH002209

    Article  ADS  Google Scholar 

  14. D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part I: Review of basic diagnostics and plasma–particle interactions: Still-challenging issues within the analytical plasma community,” Appl. Spectrosc. 64 (12), 335A–336A (2010). https://doi.org/10.1366/000370210793561691

    Article  ADS  Google Scholar 

  15. D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part II: Review of instrumental and methodological approaches to material analysis and applications to different fields,” Appl. Spectrosc. 66 (4), 347–349 (2012). https://doi.org/10.1366/11-06574

    Article  ADS  Google Scholar 

  16. M. Cirisan, J. M. Jouvard, L. Lavisse, L. Hallo, and R. Oltra, “Laser plasma plume structure and dynamics in the ambient air: The early stage of expansion,” J. Appl. Phys. 109 (10), 103301 (2011). https://doi.org/10.1063/1.3581076

    Article  ADS  Google Scholar 

  17. X. Li, W. Wei, J. Wu, S. Jia, and A. Qiu, “The influence of spot size on the expansion dynamics of nanosecond-laser-produced copper plasmas in atmosphere,” J. Appl. Phys. 113 (24), 243304 (2013). https://doi.org/10.1063/1.4812580

    Article  ADS  Google Scholar 

  18. C. Aragón and J. A. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: A review of experiments and methods,” Spectrochim. Acta, Part B. 63 (9), 893–916 (2008). https://doi.org/10.1016/j.sab.2008.05.010

    Article  ADS  Google Scholar 

  19. M. Sabsabi and P. Cielo, “Quantitative analysis of aluminum alloys by laser-induced breakdown spectroscopy and plasma characterization,” Appl. Spectrosc. 49 (4), 499–507 (1995). https://doi.org/10.1366/0003702953964408

    Article  ADS  Google Scholar 

  20. L. J. Radziemski, “From LASER to LIBS, the path of technology development,” Spectrochim. Acta, Part B. 57 (7), 1109–1113 (2002). https://doi.org/10.1016/S0584-8547(02)00052-6

    Article  ADS  Google Scholar 

  21. M. Baudelet and B. W. Smith, “The first years of laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 28 (5), 624–629 (2013). https://doi.org/10.1039/C3JA50027F

    Article  Google Scholar 

  22. R. Noll, Laser-Induced Breakdown Spectroscopy (Springer, Berlin–Heidelberg, 2012). https://doi.org/10.1007/978-3-642-20668-9

  23. A. De Giacomo, R. Gaudiuso, M. Dell’Aglio, and A. Santagata, “The role of continuum radiation in laser induced plasma spectroscopy,” Spectrochim. Acta, Part B. 65 (5), 385–394 (2010). https://doi.org/10.1016/j.sab.2010.03.016

    Article  ADS  Google Scholar 

  24. S. Zhang, X. Wang, M. He, Y. Jiang, B. Zhang, W. Hang, and B. Huang, “Laser-induced plasma temperature,” Spectrochim. Acta, Part B. 97, 13–33 (2014). https://doi.org/10.1016/0020-7381(76)80133-7

    Article  ADS  Google Scholar 

  25. A. Kramida, Yu. Ralchenko, J. Reader, and NIST ASD Team, NIST Atomic Spectra Database (ver. 5.7.1). https://doi.org/10.18434/T4W30F. https://physics. nist.gov/asd (Accessed October 13, 2020).

  26. E. P. L. Hunter and S. G. Lias, “Evaluated gas phase basicities and proton affinities of molecules: An update,” J. Phys. Chem. Ref. Data. 27 (3), 413–656 (1998). https://doi.org/10.1063/1.556018

    Article  ADS  Google Scholar 

  27. N. G. Adams and D. Smith, “The selected ion flow tube (SIFT); A technique for studying ion-neutral reactions,” Int. J. Mass Spectrom. Ion Phys. 21 (3-4), 349–359 (1976). https://doi.org/10.1016/0020-7381(76)80133-7

    Article  ADS  Google Scholar 

  28. W. Lindinger, A. Hansel, and A. Jordan, “On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) medical applications, food control and environmental research,” Int. J. Mass Spectrom. Ion Processes. 173 (3), 191–241 (1998). https://doi.org/10.1016/S0168-1176(97)00281-4

    Article  ADS  Google Scholar 

  29. T. Wróblewski, L. Ziemczonek, K. Szerement, and G. P. Karwasz, “Proton affinities of simple organic compounds,” Czech. J. Phys. 56 (2), B1110–B1115 (2006). https://doi.org/10.1007/s10582-006-0335-8

    Article  Google Scholar 

  30. M. T. Fernandez, C. Williams, R. S. Mason, and B. J. C. Cabral, “Experimental and theoretical proton affinity of limonene,” J. Chem. Soc., Faraday Trans. 94 (10), 1427–1430 (1998). https://doi.org/10.1039/A800049B

    Article  Google Scholar 

  31. F. Gunzer, “Mercury-induced fragmentation of n-decane and n-undecane in positive mode ion mobility spectrometry,” Analyst. 140 (18), 6379–6385 (2015). https://doi.org/10.1039/C5AN00876J

    Article  ADS  Google Scholar 

  32. Q. Ma, V. Motto-Ros, X. Bai, and J. Yu, “Experimental investigation of the structure and the dynamics of nanosecond laser-induced plasma in 1-atm argon ambient gas,” Appl. Phys. Lett. 103 (20), 204101 (2013). https://doi.org/10.1063/1.4829628

    Article  ADS  Google Scholar 

  33. S. Amoruso, J. Schou, and J. G. Lunney, “Influence of the atomic mass of the background gas on laser ablation plume propagation,” Appl. Phys. A. 92 (4), 907–911 (2008). https://doi.org/10.1007/s00339-008-4591-2

    Article  ADS  Google Scholar 

  34. S. Amoruso, J. Schou, and J. G. Lunney, “Multiple-scattering effects in laser ablation plume propagation in gases,” Europhys. Lett. 76 (3), 436–442 (2006). https://doi.org/10.1209/epl/i2006-10296-0

    Article  ADS  Google Scholar 

  35. V. V. Filatov, S. M. Nikiforov, V. V. Zelenov, A. V. Pento, A. B. Bukharina, I. V. Sulimenkov, V. S. Brusov, J. Yu, and V. I. Kozlovskiy, “Ionization of organic molecules with metal ions formed in the laser plasma,” J. Mass. Spectrom. 56 (5), e4723 (2021). https://doi.org/10.1002/jms.4723

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Pento.

Additional information

Translated by Yu. Sin’kov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fabelinsky, V.I., Bukharina, A.B., Pento, A.V. et al. Laser Plasma on Metal Target Surface as a Source of Vacuum UV Radiation for Ionizing Organic Molecules in Mass Spectroscopy. Phys. Wave Phen. 29, 210–220 (2021). https://doi.org/10.3103/S1541308X21030043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X21030043

Keywords:

Navigation