Skip to main content
Log in

On the Influence of the Alkaline Composition of Liquid Subphase on the Nafion Film Morphology

  • METHODS FOR THE STUDY OF AQUEOUS SOLUTIONS
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

An X-ray reflectivity analysis has shown that the composition of liquid substrates affects the structure of deposited Nafion (Teflon copolymer) films. A model of Nafion monomer, developed based on small-angle X-ray scattering data, is used to interpret the results of X-ray reflectivity analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. M. Bass, A. Berman, A. Singh, O. Konovalov, and V. Freger, “Surface-induced micelle orientation in Nafion films,” Macromolecules. 44 (8), 2893–2899 (2011). https://doi.org/10.1021/ma102361f

    Article  ADS  Google Scholar 

  2. K. B. Daly, J. B. Benziger, A. Z. Panagiotopoulos, and P. G. Debenedetti, “Molecular dynamics simulations of water permeation across Nafion membrane interfaces,” J. Phys. Chem. B. 118 (29), 8798–8807 (2014). https://doi.org/10.1021/jp5024718

    Article  Google Scholar 

  3. N. F. Bunkin, P. S. Ignatiev, V. A. Kozlov, A. V. Shkirin, S. D. Zakharov, and A. A. Zinchenko, “Study of the phase states of water close to Nafion interface,” Water. 4, 129–154 (2013). https://doi.org/10.14294/WATER.2013.1

    Article  Google Scholar 

  4. X. A. Figueroa and G. H. Pollack, “Exclusion-zone formation from discontinuous Nafion surfaces,” Int. J. Des. Nat. Ecodyn. 6 (4), 286–296 (2011). https://doi.org/10.2495/dne-v6-n4-286-296

    Article  Google Scholar 

  5. C.-S. Chen, W.-J. Chung, I. C. Hsu, C. M. Wu, and W.-C. Chin, “Force field measurements within the exclusion zone of water,” J. Biol. Phys. 38 (1), 113–120 (2012). https://doi.org/10.1007/s10867-011-9237-5

    Article  Google Scholar 

  6. D. E. Moilanen, I. R. Piletic, and M. D. Fayer, “Water dynamics in Nafion fuel cell membranes: The effects of confinement and structural changes on the hydrogen bond network,” J. Phys. Chem. C. 111 (25), 8884–8891 (2007). https://doi.org/10.1021/jp067460k

    Article  Google Scholar 

  7. N. P. Blake, M. Petersen, G. A. Voth, and H. Metiu, “Structure of hydrated Na–Nafion polymer membranes,” J. Phys. Chem. B. 109 (51), 24244–24253 (2005). https://doi.org/10.1021/jp054687r

    Article  Google Scholar 

  8. V. E. Asadchikov, V. G. Babak, A. V. Buzmakov, Yu. P. Dorokhin, I. P. Glagolev, Yu. V. Zanevskii, V. N. Zryuev, Yu. S. Krivonosov, V. F. Mamich, L. A. Moseiko, N. I. Moseiko, B. V. Mchedlishvili, S. V. Savel’ev, R. A. Senin, L. P. Smykov, G. A. Tudosi, V. D. Fateev, S. P. Chernenko, G. A. Cheremukhina, E. A. Cheremukhin, A. I. Chulichkov, Yu. N. Shilin, and V. A. Shishkov, “An X-ray diffractometer with a mobile emitter–detector system,” Instrum. Exp. Tech. 48 (3), 364–372 (2005). https://doi.org/10.1007/s10786-005-0064-4

    Article  Google Scholar 

  9. http://radicon.spb.ru/scsd_en.htm

  10. A. M. Tikhonov, V. E. Asadchikov, Yu. O. Volkov, A. D. Nuzhdin, and B. S. Roshchin, “Thermostatic chamber for X-ray studies of thin film structures at liquid substrates,” Instrum. Exp. Tech. 64 (1), 146–150 (2021). https://doi.org/10.31857/S0032816221010158

    Article  Google Scholar 

  11. L. Yu. Mogilevsky, A. T. Dembo., D. I. Svergun, and L. A. Feigin, “Automatic small-angle X-ray diffractometer with a linear position-sensitive detector,” Sov. Phys.-Crystallogr. 29 (3), 349–351 (1984).

    Google Scholar 

  12. I. V. Kozhevnikov, “Physical analysis of the inverse problem of X-ray reflectometry,” Nucl. Instrum. Methods Phys. Res., Sect. A. 508, 519–541 (2003). https://doi.org/10.1016/S0168-9002(03)01512-2

    Article  Google Scholar 

  13. I. V. Kozhevnikov, L. Peverini, and E. Ziegler, “Development of a self-consistent free-form approach for studying the three-dimensional morphology of a thin film,” Phys. Rev. B. 85 (12), 125439 (2012). https://doi.org/10.1103/PhysRevB.85.125439

    Article  ADS  Google Scholar 

  14. A. M. Tikhonov, V. E. Asadchikov, Yu. O. Volkov, B. S. Roshchin, I. S. Monakhov, and I. S. Smirnov, “Kinetics of the formation of a phospholipid multilayer on a silica sol surface,” JETP Lett. 104, 873–879 (2016). https://doi.org/10.1134/S0021364016240139

    Article  ADS  Google Scholar 

  15. Yu. A. Ermakov, V. E. Asadchikov, B. S. Roschin, Yu. O. Volkov, D. A. Khomich, A. M. Nesterenko, and A. M. Tikhonov, “Comprehensive study of the liquid expanded–liquid condensed phase transition in 1,2‑dimyristoyl-sn-glycero-3-phospho-L-serine monolayers: Surface pressure, Volta potential, X-ray reflectivity, and molecular dynamics modeling,” Langmuir. 35 (38), 12326–12338 (2019). https://doi.org/10.1021/acs.langmuir.9b01450

    Article  Google Scholar 

  16. A. M. Tikhonov and Yu. O. Volkov, “X-ray reflectometry of the adsorption octadecanamide film at the toluene–water interface,” J. Exp. Theor. Phys. 129 (3), 368–374 (2019). https://doi.org/10.1134/S1063776119090061

    Article  ADS  Google Scholar 

  17. P. V. Konarev, M. V. Petoukhov, V. V. Volkov, and D. I. Svergun, “ATSAS 2.1, a program package for small-angle scattering data analysis,” J. Appl. Crystallogr. 39, 277–286 (2006). https://doi.org/10.1107/S0021889806004699

    Article  Google Scholar 

  18. D. I. Svergun, “Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing,” Biophys. J. 76 (6), 2879–2886 (1999). https://doi.org/10.1016/S0006-3495(99)77443-6

    Article  ADS  Google Scholar 

  19. P. Bertoncello, M. Kumar, A. Notargiacomo, P. Ugo, and C. Nicolini, “Fabrication and physico-chemical properties of Nafion Langmuir–Schaefer films,” Phys. Chem. Chem. Phys. 4 (16), 4036–4043 (2002). https://doi.org/10.1039/b202449g

    Article  Google Scholar 

  20. T. Gierke, G. Munn, and F. Wilson, “The morphology in nafion perfluorinated membrane products, as determined by wide- and small-angle x-ray studies,” J. Polym. Sci.: Polym. Phys. Ed. 19 (11), 1687–1704 (1981). https://doi.org/10.1002/pol.1981.180191103

    Article  ADS  Google Scholar 

  21. K. Schmidt-Rohr and Q. Chen, “Parallel cylindrical water nanochannels in Nafion fuel-cell membranes,” Nat. Mater. 7 (1), 75–83 (2008). https://doi.org/10.1038/nmat2074

    Article  ADS  Google Scholar 

  22. S. A. Pandit and M. L. Berkowitz, “Molecular dynamics simulation of dipalmitoylphosphatidylserine bilayer with Na+ counterions,” Biophys. J. 82 (4), 1818–1827 (2002). https://doi.org/10.1016/S0006-3495(02)75532-X

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was performed using equipment of the Shared Research Center of the Federal Scientific Research Centre “Crystallography and Photonics.”

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation within a State assignment for the Federal Scientific Research Centre “Crystallography and Photonics” and Kapitza Institute for Physical Problems of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Asadchikov.

Additional information

Translated by Yu. Sin’kov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asadchikov, V.E., Bunkin, N.F., Volkov, V.V. et al. On the Influence of the Alkaline Composition of Liquid Subphase on the Nafion Film Morphology. Phys. Wave Phen. 29, 131–135 (2021). https://doi.org/10.3103/S1541308X21020023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X21020023

Keywords:

Navigation