Skip to main content
Log in

Laser Desorption of Organic Compound Ions from a Silicon Surface Modified by Laser Irradiation

  • LASER RADIATION AND ITS APPLICATION
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

Laser desorption of organic compound ions from specially prepared surfaces is known as surface-assisted laser desorption/ionization (SALDI). In this work the properties of a SALDI ion emitter obtained by two-stage laser treatment of crystalline silicon surface have been investigated. The laser surface treatment leads to the formation of a layer with nanoscale objects—quantum dots (QDs) less than 10 nm in size, providing laser desorption of organic compound ions. A change in the desorbing laser wavelength from 351 to 263 nm at comparable laser-exposed spot sizes and fluences results in a sharp decrease in the formation efficiency for MH+ ions and appearance of ions M+ for the same analytes. The effect is apparently determined by the spectral properties of the quantum dots formed on the silicon surface under laser irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. J. Sunner, E. Dratz, and Y.-C. Chen, “Graphite surface-assisted laser desorption/ionization time-of-flight mass spectrometry of peptides and proteins from liquid solutions,” Anal. Chem. 67 (23), 4335–4342 (1995). https://doi.org/10.1021/ac00119a021

    Article  Google Scholar 

  2. P. Kraft, S. Alimpiev, E. Dratz, and J. Sunner, “Infrared, surface-assisted laser desorption ionization mass spectrometry on frozen aqueous solutions of proteins and peptides using suspensions of organic solids,” J. Am. Soc. Mass Spectrom. 9 (9), 912–924 (1998). https://doi.org/10.1016/S1044-0305(98)00063-4

    Article  Google Scholar 

  3. J. A. Stolee, B. N. Walker, V. Zorba, R. E. Russo, and A. Vertes, “Laser–nanostructure interactions for ion production,” Phys. Chem. Chem. Phys. 14 (24), 8453–8471 (2012). https://doi.org/10.1039/C2CP00038E

    Article  Google Scholar 

  4. K. P. Law and J. R. Larkin, “Recent advances in SALDI-MS techniques and their chemical and bioanalytical applications,” Anal. Bioanal. Chem. 399 (8), 2597–2622 (2011). https://doi.org/10.1007/s00216-010-4063-3

    Article  Google Scholar 

  5. A. S. Borodkov, I. I. Kuz’min, N. B. Polyakov, A. A. Grechnikov, and S. S. Alimpiev, “Comparison of the laser desorption/ionization methods for detecting metal complexes,” Phys. Wave Phenom. 25 (4), 243–248 (2017). https://doi.org/10.3103/S1541308X1704001X

    Article  ADS  Google Scholar 

  6. J. Li and R. H. Lipson, “Insights into desorption ionization on silicon (DIOS),” J. Phys. Chem. C.117 (51), 27114–27119 (2013). https://doi.org/10.1021/jp4074653

    Article  Google Scholar 

  7. H.-W. Tang, K.-M. Ng, W. Lu, and C.-M. Che, “Ion desorption efficiency and internal energy transfer in carbon-based surface-assisted laser desorption/ionization mass spectrometry: Desorption mechanism(s) and the design of SALDI substrates,” Anal. Chem. 81 (12), 4720–4729 (2009). https://doi.org/10.1021/ac8026367

    Article  Google Scholar 

  8. K. Tanaka, H. Waki, Y. Ido, S. Akita, Y. Yoshida, T. Yoshida, and T. Matsuo, “Protein and polymer analysis up to m/z 100 000 by laser ionization time-of-flight mass spectrometry,” Rapid Commun. Mass Spectrom. 2 (8), 151–153 (1988). https://doi.org/10.1002/rcm.1290020802

    Article  ADS  Google Scholar 

  9. K.-M. Ng, S.-L. Chau, H.-W. Tang, X.-G. Wei, K.-C. Lau, F. Ye, and A. M.-C. Ng, “Ion-desorption efficiency and internal-energy transfer in surface-assisted laser desorption/ionization: More implication(s) for the thermal-driven and phase-transition-driven desorption process,” J. Phys. Chem. C.119 (41), 23708–23720 (2015). https://doi.org/10.1021/acs.jpcc.5b05957

    Article  Google Scholar 

  10. X. Wen, S. Dagan, and V. H. Wysocki, “Small-molecule analysis with siliconnanoparticle-assisted laser desorption/ionization mass spectrometry,” Anal. Chem. 79 (2), 434–444 (2007). https://doi.org/10.1021/ac061154l

    Article  Google Scholar 

  11. Z. Shen, J. J. Thomas, C. Averbuj, K. M. Broo, M. Engelhard, J. E. Crowell, M. G. Finn, and G. Siuzdak, “Porous silicon as a versatile platform for laser desorption/ionization mass spectrometry,” Anal. Chem. 73 (3), 612–619 (2001). https://doi.org/10.1021/ac000746f

    Article  Google Scholar 

  12. S. Alimpiev, S. Nikiforov, V. Karavanskii, T. Minton, and J. Sunner, “On the mechanism of laser-induced desorption–ionization of organic compounds from etched silicon and carbon surfaces,” J. Chem. Phys. 115 (4), 1891–1901 (2001). https://doi.org/10.1063/1.1381531

    Article  ADS  Google Scholar 

  13. S. N. Zhabin, A. V. Pento, A. A. Grechnikov, A. S. Borodkov, B. G. Sartakov, Ya. O. Simanovsky, S. M. Nikiforov, and S. S. Alimpiev, “On the role of laser irradiation in the processes of laser desorption/ionisation from silicon surfaces,” Quantum Electron. 41 (9), 835–842 (2011). https://doi.org/10.1070/Qe2011v041n09abeh014678

    Article  ADS  Google Scholar 

  14. S. Alimpiev, A. Grechnikov, J. Sunner, V. Karavanskii, Ya. Simanovsky, S. Zhabin, and S. Nikiforov, “On the role of defects and surface chemistry for surface-assisted laser desorption ionization from silicon,” J. Chem. Phys. 128 (1), 014711 (2008). https://doi.org/10.1063/1.2802304

    Article  ADS  Google Scholar 

  15. E. P. Go, J. V. Apon, G. Luo, A. Saghatelian, R. H. Daniels, V. Sahi, R. Dubrow, B. F. Cravatt, A. Vertes, and G. Siuzdak, “Desorption/ionization on silicon nanowires,” Anal. Chem. 77 (6), 1641–1646 (2005). https://doi.org/10.1021/ac048460o

    Article  Google Scholar 

  16. J. A. Stolee and A. Vertes, “Polarization dependent fragmentation of ions produced by laser desorption from nanopost arrays,” Phys. Chem. Chem. Phys. 13 (20), 9140–9146 (2011). https://doi.org/10.1039/C0CP02709J

    Article  Google Scholar 

  17. S. Alimpiev, A. Grechnikov, J. Sunner, A. Borodkov, V. Karavanskii, Ya. Simanovsky, and S. Nikiforov, “Gas chromatography/surface-assisted laser desorption ionization mass spectrometry of amphetamine-like compounds,” Anal. Chem. 81 (3), 1255–1561 (2009). https://doi.org/10.1021/ac802176j

    Article  Google Scholar 

  18. A. A. Grechnikov, A. S. Borodkov, S. S. Alimpiev, S. M. Nikiforov, and Ya. O. Simanovsky, “Gas-phase basicity: Parameter determining the efficiency of laser desorption/ionization from silicon surfaces,” J. Anal. Chem. 68 (1), 19–26 (2013). https://doi.org/10.1134/S1061934812110056

    Article  Google Scholar 

  19. Y. Chen and A. Vertes, “Adjustable fragmentation in laser desorption/ionization from laser-induced silicon microcolumn arrays,” Anal. Chem. 78 (16), 5835–5844 (2006). https://doi.org/10.1021/ac060405n

    Article  Google Scholar 

  20. S. S. Alimpiev, S. M. Nikiforov, A. A. Grechnikov, and J. A. Sunner, “Novel technique for ultra sensitive detection of organic compounds,” in Vapour and Trace Detection of Explosives for Anti-Terrorism Purposes, NATO Science Series (Ser. II: Mathematics, Physics and Chemistry), Ed. by M. Krausa and A. A. Reznev (Springer, Dordrecht, 2004), Vol. 167, p. 101–112. https://doi.org/10.1007/978-1-4020-2716-1_12

  21. A. A. Grechnikov, S. S. Alimpiev, S. M. Nikiforov, and Ya. O. Simanovsky, RF Patent No. 2426191, Byull. Izobret., No. 22 (2011).

  22. W. C. Wiley and I. H. McLaren, “Time-of-flight mass spectrometer with improved resolution,” Rev. Sci. Instrum. 26 (12), 1150–1157 (1955). https://doi.org/10.1063/1.1715212

    Article  ADS  Google Scholar 

  23. S. G. Lias, “Gas phase ion energetics data,” in NIST Chemistry WebBook—NIST Standard Reference Database Number 69, Eds. P. J. Linstrom and W. G. Mallard (Nat. Inst. Standards and Technol., Gaithersburg MD, 2020) (retrieved February 13, 2020). https://doi.org/10.18434/T4D303

  24. E. P. L. Hunter and S. G. Lias, “Evaluated gas phase basicities and proton affinities of molecules: An update,” J. Phys. Chem. Ref. Data. 27 (3), 413–656 (1998). https://doi.org/10.1063/1.556018

    Article  ADS  Google Scholar 

  25. V. Talrose, E. B. Stern, A. A. Goncharova, N. A. Messineva, N. V. Trusova, and M. V. Efimkina, “UV/visible spectra,” in NIST Chemistry WebBook—NIST Standard Reference Database Number 69, Eds. P. J. Linstrom and W. G. Mallard (Nat. Inst. Standards and Technol., Gaithersburg MD, 2020) (retrieved February 13, 2020). https://doi.org/10.18434/T4D303

  26. D. Dougherty, E. S. Younathan, R. Voll, S. Abdulnur, and S. P. McGlynn, “Photoelectron spectroscopy of some biological molecules,” J. Electron Spectrosc. Relat. Phenom. 13 (3), 379–393 (1978). https://doi.org/10.1016/0368-2048(78)85042-7

    Article  Google Scholar 

  27. H. Bahrami, M. Tabrizchi, and H. Farrokhpour, “Protonation of caffeine: A theoretical and experimental study,” Chem. Phys. 415, 222–227 (2013). https://doi.org/10.1016/j.chemphys.2013.01.022

    Article  Google Scholar 

  28. A. Belay, K. Ture, M. Redi, and A. Asfaw, “Measurement of caffeine in coffee beans with UV/vis spectrometer,” Food Chem. 108 (1), 310–315 (2008). https://doi.org/10.1016/j.foodchem.2007.10.024

    Article  Google Scholar 

  29. M. A. Smith, J. W. Hager, and S. C. Wallace, “Two color photoionization spectroscopy of jet cooled aniline: Vibrational frequencies of the aniline \({{\tilde {X}}^{2}}{{B}_{1}}\) radical cation,” J. Chem. Phys. 80 (7), 3097–3105 (1984). https://doi.org/10.1063/1.447124

    Article  ADS  Google Scholar 

  30. J. E. Mathis and R. N. Compton, “Single and multiple photon ionization of triethylamine,” J. Chem. Phys. 104 (21), 8341–8347 (1996). https://doi.org/10.1063/1.471585

    Article  ADS  Google Scholar 

  31. M. Berton, R. Mello, R. Acerete, and M. E. González Núñez, “Photolysis of tertiary amines in the presence of CO2: The paths to formic acid, α-amino acids, and 1,2-diamines,” J. Org. Chem. 83 (1), 96–103 (2018). https://doi.org/10.1021/acs.joc.7b02407

    Article  Google Scholar 

  32. H. R. Wendt and H. E. Hunziker, “The UV spectra of primary, secondary, and tertiary alkyl radicals,” J. Chem. Phys. 81 (2), 717–723 (1984). https://doi.org/10.1063/1.447755

    Article  ADS  Google Scholar 

  33. D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B.27 (2), 985–1009 (1983). https://doi.org/10.1103/PhysRevB.27.985

    Article  ADS  Google Scholar 

  34. J.-S. Chen, M. Li, and M. Cotlet, “Nanoscale photoinduced charge transfer with individual quantum dots: Tunability through synthesis, interface design, and interaction with charge traps,” ACS Omega. 4 (5), 9102–9112 (2019). https://doi.org/10.1021/acsomega.9b00803

    Article  Google Scholar 

  35. N. V. Tkachenko, “Photoinduced charge separation in semiconductor-quantum-dot/organic-molecule hybrids,” ChemPhotoChem. 2 (3), 112–120 (2018). https://doi.org/10.1002/cptc.201700161

    Article  Google Scholar 

  36. P. L. Liu, R. Yen, N. Bloembergen, and R. T. Hodgson, “Picosecond laser-induced melting and resolidification morphology on Si,” Appl. Phys. Lett.34 (12), 864–865 (1979). https://doi.org/10.1063/1.90703

    Article  ADS  Google Scholar 

  37. S. Watanabe, Y. Yoshida, S. Kayashima, S. Yatsu, M. Kawai, and T. Kato, “In situ observation of self-organizing nanodot formation under nanosecond-pulsed laser irradiation on Si surface,” J. Appl. Phys. 108 (10), 103510 (2010). https://doi.org/10.1063/1.3512888

    Article  ADS  Google Scholar 

  38. M. Han and J. Sunner, “An activated carbon substrate surface for laser desorption mass spectrometry,” J. Am. Soc. Mass Spectrom. 11 (7), 644–649 (2000). https://doi.org/10.1016/S1044-0305(00)00129-X

    Article  Google Scholar 

  39. C. Bulutay, “Interband, intraband, and excited-state direct photon absorption of silicon and germanium nanocrystals embedded in a wide band-gap lattice,” Phys. Rev. B.76 (20), 205321 (2007). https://doi.org/10.1103/PhysRevB.76.205321

    Article  ADS  Google Scholar 

  40. M. Dasog, Z. Yang, S. Regli, T. M. Atkins, A. Faramus, M. P. Singh, E. Muthuswamy, S. M. Kauzlarich, R. D. Tilley, and J. G. C. Veinot, “Chemical insight into the origin of red and blue photoluminescence arising from freestanding silicon nanocrystals,” ACS Nano. 7 (3), 2676–2685 (2013). https://doi.org/10.1021/nn4000644

    Article  Google Scholar 

  41. Q. Li and R. Jin, “Photoluminescence from colloidal silicon nanoparticles: Significant effect of surface,” Nanotechnol. Rev. 6 (6), 601–612 (2017). https://doi.org/10.1515/ntrev-2017-0145

    Article  Google Scholar 

  42. L. Patrone, D. Nelson, V. I. Safarov, M. Sentis, W. Marine, and S. Giorgio, “Photoluminescence of silicon nanoclusters with reduced size dispersion produced by laser ablation,” J. Appl. Phys. 87 (8), 3829–3837 (2000). https://doi.org/10.1063/1.372421

    Article  ADS  Google Scholar 

  43. D. Menzel and R. Gomer, “Desorption from metal surfaces by low-energy electrons,” J. Chem. Phys. 41 (11), 3311–3328 (1964). https://doi.org/10.1063/1.1725730

    Article  ADS  Google Scholar 

  44. D. Menzel, “Thirty years of MGR: How it came about, and what came of it,” Nucl. Instrum. Methods Phys. Res.,Sect. B.101 (1-2), 1–10 (1995). https://doi.org/10.1016/0168-583X(95)00060-7

    Article  Google Scholar 

Download references

Funding

This study was supported in part by the Russian Foundation for Basic Research, project no. 18-32-01018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Pento.

Additional information

Translated by Yu. Sin’kov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pento, A.V., Nikiforov, S.M. & Simanovsky, Y.O. Laser Desorption of Organic Compound Ions from a Silicon Surface Modified by Laser Irradiation. Phys. Wave Phen. 28, 213–221 (2020). https://doi.org/10.3103/S1541308X20030164

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X20030164

Navigation