Skip to main content
Log in

Fundamental Noises in Diode Laser Spectroscopy

  • LASER RADIATION AND ITS APPLICATION
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract—

The influence of fundamental noises of a diode laser and a photodetector on the registration of absorption spectra by diode laser spectroscopy (DLS) has been studied. It is shown that the diode laser noise is maximal at pump currents close to the threshold value. At currents significantly exceeding the threshold values, the signal-to-noise ratio tends to a constant. When the recorded radiation flux increases, the relative noise of the photodiodes decreases and at sufficiently high values becomes negligible compared to the diode laser noise. Thus, it is experimentally shown that the minimum achievable limits of detection of various substances in diode laser spectroscopy are determined by the noise of the diode laser itself. The obtained results have an important application value; they can be used to design analytical equipment for measuring low concentrations of gaseous substances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. E. D. Hinkley, “High resolution IR spectroscopy with a tunable diode laser,” Appl. Phys. Lett. 16 (9), 351–353 (1970). https://doi.org/10.1063/1.1653222

    Article  ADS  Google Scholar 

  2. E. Hinkley, R. Ku, and P. Kelley, “Techniques for detection of molecular pollutants by absorption of laser radiation,” in Laser Monitoring of Atmosphere, Ed. by E. Hinkley (Springer, Berlin, 1976), pp. 237–295.

    Book  Google Scholar 

  3. E. D. Hinkley, K. W. Nill, and F. A. Blum, Laser Spectroscopy of Atoms and Molecules, Ed. by H. Walther (Springer, Heidelberg, 1976).

    Google Scholar 

  4. K. Niemax, “Diode laser spectroscopy,” Spectrochim. Acta Rev. 15, 289 (1993).

    Google Scholar 

  5. Proc. SPIE. Vol. 1724: Tunable Diode Laser Application, Ed. by A. I. Nadezhdinskii and A. M. Prokhorov (1992).

  6. R. Smith, F. Jones, and R. Chasmar, Detection and Measurement of Infrared Radiation (Oxford Univ., London, 1957).

    Google Scholar 

  7. Handbook of Optics/Sponsored by the Optical Society of America, Ed. by M. Bass, 2nd ed. (McGraw-Hill, New York, 1995).

    Google Scholar 

  8. https://www.hamamatsu.com/eu/en/4004.html

  9. A. I. Nadezhdinskii and Ya. Ya. Ponurovskii, “Diode laser spectrometer for high-precision measurements,” Quantum Electron. 49 (7), 613–622 (2019). https://doi.org/10.1070/QEL16776

    Article  ADS  Google Scholar 

  10. J. B. Johnson, “Thermal agitation of electricity in conductors,” Phys. Rev. 32 (1), 97–109 (1928). https://doi.org/10.1103/PhysRev.32.97

    Article  ADS  Google Scholar 

  11. H. Nyquist, “Thermal agitation of electric charge in conductors,” Phys. Rev. 32 (1), 110 (1928). https://doi.org/10.1103/PhysRev.32.110

    Article  ADS  Google Scholar 

  12. W. Schottky, “Spontaneous current fluctuation in different electricity conductors,” Ann. Phys. 57, 541 (1918).

    Article  Google Scholar 

  13. J. B. Johnson, “The Schottky effect in low frequency circuits,” Phys. Rev. 26 (1), 71–85 (1925). https://doi.org/10.1103/PhysRev.26.71

    Article  ADS  Google Scholar 

  14. A. Van der Ziel, Noise; Sources, Characterization, Measurement (Prentice-Hall, 1970).

    Google Scholar 

  15. P. Werle, F. Slemr, M. Gehrtz, and Ch. Bräuchle, “Wideband noise characteristics of a lead-salt diode laser: Possibility of quantum noise limited TDLAS performance,” Appl. Opt. 28 (9), 1638–1642 (1989). https://doi.org/10.1364/AO.28.001638

    Article  ADS  Google Scholar 

  16. P. Werle and F. Slemr, “Signal-to-noise ratio analysis in laser absorption spectrometers using optical multipass cells,” Appl. Opt. 30 (4), 430–434 (1991). https://doi.org/10.1364/AO.30.000430

    Article  ADS  Google Scholar 

  17. R. S. Eng, A. W. Mantz, and T. R. Todd, “Low-frequency noise characteristics of Pb-salt semiconductor lasers,” Appl. Opt. 18 (7), 1088–1091 (1979). https://doi.org/10.1364/AO.18.001088

    Article  ADS  Google Scholar 

  18. C. Carlisle, D. Cooper, and H. Preier, “Quantum noise-limited FM spectroscopy with a lead-salt diode laser,” Appl. Opt. 28 (13), 256–257 (1989). https://doi.org/10.1364/AO.28.002567

    Article  Google Scholar 

  19. V. V. Liger, Yu. A. Kuritsyn, V. M. Krivtsun, E. P. Snegirev, and A. N. Kononov, “Measurement of the absorption with a diode laser characterized by a detection threshold governed by the shot noise of its radiation,” Quantum Electron. 27 (4), 360–365 (1997). https://doi.org/10.1070/QE1997v027n04ABEH000949

    Article  ADS  Google Scholar 

  20. V. Liger, A. Zybin, Yu. Kuritsyn, and K. Niemax, “Diode-laser atomic-absorption spectrometry by the double-beam–double-modulation technique,” Spectrochim. Acta B.52 (8), 1125–1138 (1997). https://doi.org/10.1016/S0584-8547(97)00029-3

    Article  ADS  Google Scholar 

  21. A. Nadezhdinskii, “Shot noise limited TDLS,” in Abstracts of the 5th International Conference on Tunable Diode Laser Spectroscopy (Florence, Italy, 11–15 July, 2005), p. 91. http://www.dls.gpi.ru/eng/conf/TDLS2005/TDLS-2005_ Abstracts.pdf

  22. J. W. Kim, Y. S. Yoo, J. Y. Lee, J. B. Lee, and J. W. Hahn, “Uncertainty analysis of absolute concentration measurement with continuous-wave cavity ringdown spectroscopy,” Appl. Opt. 40 (30), 5509–5516 (2001). https://doi.org/10.1364/AO.40.005509

    Article  ADS  Google Scholar 

  23. Physical Quantities: A Handbook, Ed. by I. S. Grigor’ev and E. Z. Melikhov (Energoatomizdat, Moscow, 1991), p. 1046 [in Russian].

    Google Scholar 

  24. http://www.ioffe.ru/SVA/NSM/Semicond/GaAs

  25. V. P. Bykov, Laser Electrodynamics (Fizmatlit, Moscow, 2006) [in Russian].

    Google Scholar 

  26. https://www.crunchbase.com/organization/sensors-unlimited#section-overview

  27. https://www.lasercomponents.com

  28. https://www.ntt-electronics.com/en/

  29. www.tehencom.com/Companies/Anritsu/Anritsu.htm

  30. A. I. Nadezhdinskii and Ya. Ya. Ponurovskii, “High-precision spectroscopy with diode lasers. Deviation of gas from ideal behavior,” Phys. Wave Phenom. 26 (3), 169–181 (2018). https://doi.org/10.3103/S1541308X18030019

    Article  ADS  Google Scholar 

  31. A. G. Berezin, S. L. Malyugin, A. I. Nadezhdinskii, D. Yu. Namestnikov, Ya. Ya. Ponurovskii, D. B. Stavrovskii, Yu. P. Shapovalov, I. E. Vyazov, V. Ya. Zaslavskii, Yu. G. Selivanov, N. M. Gorshunov, G. Yu. Grigoriev, and Sh. Sh. Nabiev, “UF6 enrichment measurements using TDLS techniques,” Spectrochim. Acta A.66 (4-5), 796–802 (2007). https://doi.org/10.1016/j.saa.2006.10.037

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. Ya. Ponurovskii.

Additional information

Translated by Yu. Sin’kov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadezhdinskii, A.I., Ponurovskii, Y.Y., Stavrovskii, D.B. et al. Fundamental Noises in Diode Laser Spectroscopy. Phys. Wave Phen. 28, 200–207 (2020). https://doi.org/10.3103/S1541308X20030152

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X20030152

Navigation