Skip to main content
Log in

Optical Solitons with Kudryashov’s Equation by Lie Symmetry Analysis

  • PHYSICS OF 1D AND 2D MEDIA
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

In this work, Kudryashov’s equation is studied with Lie symmetry analysis, which is implemented to describe the propagation pulses in an optical fiber. The equation is converted into system of ordinary differential equations with similarity transformations. These gave way to bright, dark and singular optical soliton solutions to the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. Khan, “Stochastic perturbation of sub-pico second envelope solitons for Triki–Biswas equation with multi-photon absorption and bandpass filters,” Optik. 183, 174–178 (2019). https://doi.org/10.1016/j.ijleo.2019.02.065

    Article  ADS  Google Scholar 

  2. G. E. Astrakharchik and B. A. Malomed, “Dynamics of one-dimensional quantum droplets,” Phys. Rev. A.98 (1), 013631 (2018). https://doi.org/10.1103/PhysRevA.98.013631

    Article  ADS  Google Scholar 

  3. J. Atai and B. A. Malomed, “Gap solitons in Bragg gratings with dispersive reflectivity,” Phys. Lett. A.342 (5-6), 404–412 (2005). https://doi.org/10.1016/j.physleta.2005.05.081

    Article  ADS  MATH  Google Scholar 

  4. A. Biswas, M. Ekici, A. Sonmezoglu, A. S. Alshomrani, and M. R. Belic, “Optical solitons with Kudryashov’s equation by extended trial function,” Optik. 202, 163290 (2020). https://doi.org/10.1016/j.ijleo.2019.163290

    Article  ADS  Google Scholar 

  5. A. Biswas, A. Sonmezoglu, M. Ekici, A. S. Alshomrani, and M. R. Belic, “Optical solitons with Kudryashov’s equation by F-expansion,” Optik. 199, 163338 (2019). https://doi.org/10.1016/j.ijleo.2019.163338

    Article  ADS  Google Scholar 

  6. A. Biswas, J. Vega-Guzmán, M. Ekici, Q. Zhou, H. Triki, A. S. Alshomrani, and M. R. Belic, “Optical solitons and conservation laws of Kudryashov’s equation using undetermined coefficients,” Optik. 202, 163417 (2020). https://doi.org/10.1016/j.ijleo.2019.163417

    Article  ADS  Google Scholar 

  7. K. W. Chow, B. A. Malomed, and K. Nakkeeran, “Exact solitary- and periodic-wave modes in coupled equations with saturable nonlinearity,” Phys. Lett. A.359 (1), 37–41 (2006). https://doi.org/10.1016/j.physleta.2006.05.082

    Article  ADS  MATH  Google Scholar 

  8. M. Ekici and A. Sonmezoglu, “Optical solitons with Biswas–Arshed equation by extended trial function method,” Optik. 177, 13–20 (2019). https://doi.org/10.1016/j.ijleo.2018.09.134

    Article  ADS  Google Scholar 

  9. N. A. Kudryashov, “A generalized model for description of propagation pulses in optical fiber,” Optik. 189, 42–52 (2019). https://doi.org/10.1016/j.ijleo.2019.05.069

    Article  ADS  Google Scholar 

  10. N. A. Kudryashov, “First integral and general solution of traveling wave reduction for the Triki–Biswas equation,” Optik. 181, 338–342 (2019). https://doi.org/10.1016/j.ijleo.2019.03.087

    Article  Google Scholar 

  11. N. A. Kudryashov, “Construction of nonlinear differential equations for description of propagation pulses in optical fiber,” Optik. 192, 162964 (2019). https://doi.org/10.1016/j.ijleo.2019.162964

    Article  ADS  Google Scholar 

  12. N. A. Kudryashov, “On types of nonlinear nonintegrable equations with exact solutions,” Phys. Lett. A.155 (4-5), 269–275 (1991). https://doi.org/10.1016/0375-9601(91)90481-M

    Article  ADS  MathSciNet  Google Scholar 

  13. N. A. Kudryashov, D. V. Safonova, and A. Biswas, “Painlevé analysis and a solution to the traveling wave reduction of the Radhakrishnan–Kundu–Lakshmanan equation,” Regul. Chaot. Dyn. 24 (6), 607–614 (2019). https://doi.org/10.1134/S1560354719060029

    Article  ADS  MATH  Google Scholar 

  14. N. K. Vitanov, “Application of simplest equations of Bernoulli and Riccati kind for obtaining exact traveling-wave solutions for a class of PDEs with polynomial nonlinearity,” Commun. Nonlin. Sci. Numer. Simul. 15 (8), 2050–2060 (2010). https://doi.org/10.1016/j.cnsns.2009.08.011

    Article  MathSciNet  MATH  Google Scholar 

  15. Y. Qiu, B. A. Malomed, D. Mihalache, X. Zhu, J. Peng, and Y. He, “Generation of stable multi-vortex clusters in a dissipative medium with anti-cubic nonlinearity,” Phys. Lett. A.383 (22), 2579–2583 (2019). https://doi.org/10.1016/j.physleta.2019.05.022

    Article  ADS  MathSciNet  Google Scholar 

  16. Y. Yildirim, “Optical solitons to Biswas–Arshed model in birefringent fibers using modified simple equation architecture,” Optik. 182, 1149–1162 (2019). https://doi.org/10.1016/j.ijleo.2019.02.013

    Article  ADS  Google Scholar 

  17. J. Zhang, X. Wei, and Y. Lu, “A generalized (G'/G)-expansion method and its applications,” Phys. Lett. A.372 (20), 3653–3658 (2008). https://doi.org/10.1016/j.physleta.2008.02.027

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. L. V. Ovsiannikov, Group Analysis of Differential Equations (Academic, New York, 1982).

    MATH  Google Scholar 

  19. G. W. Bluman and S. C. Anco, Symmetry and Integration Methods for Differential Equations (Springer Science & Business Media, 2008).

    MATH  Google Scholar 

  20. P. J. Olver, Applications of Lie Groups to Differential Equations (Springer Science & Business Media, 2000).

    MATH  Google Scholar 

Download references

Funding

Support of CSIR Research Grant 09/1051(0028)/2018-EMR-I to one of the authors (S. Malik) for carrying out the research work is fully acknowledged. The research work of fourth author (QZ) was supported by the National Natural Science Foundation of China (Grant nos. 11705130 and 1157149); this author was also sponsored by the Chutian Scholar Program of Hubei Government in China. The research work of the seventh author (MRB) was supported by the grant NPRP 11S-1126-170033 from QNRF and he is thankful for it.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Biswas.

Ethics declarations

The authors also declare that there is no conflict of interest.

Additional information

The text was submitted by the authors in English.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Malik, S., Biswas, A. et al. Optical Solitons with Kudryashov’s Equation by Lie Symmetry Analysis. Phys. Wave Phen. 28, 299–304 (2020). https://doi.org/10.3103/S1541308X20030127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X20030127

Navigation