Skip to main content
Log in

Anomalous Increase in Spectral Intensity of Soft-Mode Raman Scattering near the Temperature of the Ferroelectric Phase Transition in Lithium Tantalate Crystals

  • PHASE TRANSITIONS
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

Reported are the results of studying the sharp increase in the spectral intensity at the lattice soft mode near the temperature of the phase transition in the lithium tantalate crystal. The Raman scattering spectra are recorded in the x(zz)y polarization geometry corresponding to manifestation of the soft mode responsible for the ferroelectric phase transition in lithium tantalate at 898 K. The recording is performed at fixed temperatures T (\(I(\omega {\kern 1pt} ',T)\), T = const) and at fixed spectrometer frequencies (\(I(\omega {\kern 1pt} ',T)\), \(\omega {\kern 1pt} ' = {{\omega }_{0}} - T = {\text{const}}\)) under slow (1 deg./min) crystal temperature variation. Strong increase (by three orders of magnitude) is observed in the peak of the reduced spectral intensity i0(Ω) of the isofrequency temperature dependence at the fixed spectrometer frequency shift relative to the exciting radiation \(\Omega = {{\omega }_{0}} - \omega {\kern 1pt} ' = 10\) cm–1 similar to the one earlier observed in quartz crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. J. Imbrock, S. Wevering, K. Buse, and E. Krätzig, “Nonvolatile holographic storage in photorefractive lithium tantalate crystals with laser pulses,” J. Opt. Soc. Am. B.16 (9), 1392–1397 (1999). https://doi.org/10.1364/JOSAB.16.001392

    Article  ADS  Google Scholar 

  2. T. Hatanaka, K. Nakamura, T. Taniuchi, H. Ito, Y. Furukawa, and K. Kitamura, “Quasi-phase-matched optical parametric oscillation with periodically poled stoichiometric LiTaO3,” Opt. Lett. 25 (9), 651–653 (2000). https://doi.org/10.1364/OL.25.000651

    Article  ADS  Google Scholar 

  3. Y. Xu, Ferroelectric Materials and Their Applications (Elsevier, Amsterdam, 1991).

    Google Scholar 

  4. Irzaman, R. Siskandar, N. Nabilah, Aminullah, B. Yuliarto, K. A. Haman, and H. Alatas, “Application of lithium tantalate (LiTaO3) films as light sensor to monitor the light status in the Arduino Uno based energy-saving automatic light prototype and passive infrared sensor,” Ferroelectrics. 524 (1), 44–45 (2018). https://doi.org/10.1080/00150193.2018.1432842

    Article  Google Scholar 

  5. W. D. Johnston, Jr. and I. P. Kaminow, “Temperature dependence of Raman and Rayleigh scattering in LiNbO3 and LiTaO3,” Phys. Rev. 168, 1045–1054 (1968). https://doi.org/10.1103/PhysRev.168.1045

    Article  ADS  Google Scholar 

  6. B. A. Scott and G. Burns, “Determination of stoichiometry variations in LiNbO3 and LiTaO3 by Raman powder spectroscopy,” J. Am. Ceram. Soc. 55 (2), 225–230 (1972). https://doi.org/10.1111/j.1151-2916.1972.tb11266.x

    Article  Google Scholar 

  7. A. F. Penna, A. Chaves, and S. P. S. Porto, “Debye-like diffusive central mode near the phase transition in ferroelectric lithium tantalite,” Solid State Commun. 19 (6), 491–494 (1976). https://doi.org/10.1016/0038-1098(76)90049-1

    Article  ADS  Google Scholar 

  8. A. F. Penna, A. Chaves, P. da R. Andrade, and S. P. S. Porto, “Light scattering by lithium tantalate at room temperature,” Phys. Rev. B.13 (11), 4907–4917 (1976). https://doi.org/10.1103/PhysRevB.13.4907

    Article  ADS  Google Scholar 

  9. S. V. Ivanova, V. S. Gorelik, and B. A. Strukov, “Raman spectra and dielectric properties of lithium niobate and lithium tantalite,” Ferroelectrics. 21 (1), 563–564 (1978). https://doi.org/10.1080/00150197808237330

    Article  Google Scholar 

  10. B. S. Umarov, J. F. Vetelino, N. S. Abdullaev, and A. A. Anikiev, “Study of the temperature dependence of the dielectric properties of LiTaO3 by Raman spectroscopy,” Phys. Status Solidi B.101 (2), 653–656 (1980). https://doi.org/10.1002/pssb.2221010226

    Article  ADS  Google Scholar 

  11. N. S. Abdulloev, V. S. Gorelik, and B. S. Umarov, “Investigation of the temperature dependence of the dispersion of dielectric characteristics of lithium tantalate by the method of Raman scattering of light,” J. Appl. Spectrosc. 36 (5), 585–589 (1982). https://doi.org/10.1007/BF00663669

    Article  ADS  Google Scholar 

  12. J. Mendes-Filho, V. Lemos, and F. Cerdelra, “Pressure dependence of the Raman spectra of LiNbO3 and LiTaO3,” J. Raman Spectrosc. 15 (6), 367–369 (1984). https://doi.org/10.1002/jrs.1250150602

    Article  ADS  Google Scholar 

  13. A. Jayaraman and A. A. Ballman, “Effect of pressure on the Raman modes in LiNbO3 and LiTaO3,” J. Appl. Phys. 60 (3), 1208–1209 (1986). https://doi.org/10.1063/1.337366

    Article  ADS  Google Scholar 

  14. X. Yang, G. Lan, B. Li, and H. Wang, “Raman spectra and directional dispersion in LiNbO3 and LiTaO3,” Phys. Status Solidi B.142 (1), 287–300 (1987). https://doi.org/10.1002/pssb.2221420130

    Article  ADS  Google Scholar 

  15. C. Raptis, “Assignment and temperature dependence of the Raman modes of LiTaO3 studied over the ferroelectric and paraelectric phases,” Phys. Rev. B.38 (14), 10007–10019 (1987). https://doi.org/10.1103/PhysRevB.38.10007

    Article  ADS  Google Scholar 

  16. Y. Lin, G. Lan, and H. Wang, “An irreversible pressure-induced amorphization in LiTaO3 crystal,” Solid State Commun. 91 (11), 879–881 (1994). https://doi.org/10.1016/0038-1098(94)90006-X

    Article  ADS  Google Scholar 

  17. Y.-C. Ge, L.-X. Li, and C.-Z. Zhao, “Temperature-dependent Raman study on vibrational modes in LiTaO3,” Spectrosc. Lett.30 (3), 567–574 (1997). https://doi.org/10.1080/00387019708006683

    Article  ADS  Google Scholar 

  18. Y. Repelin, E. Husson, F. Bennani, and C. Proust, “Raman spectroscopy of lithium niobate and lithium tantalate. Force field calculations,” J. Phys. Chem. Solids. 60 (6), 819–825 (1999). https://doi.org/10.1016/S0022-3697(98)00333-3

    Article  ADS  Google Scholar 

  19. L. Shi, Y. Kong, W. Yan, H. Liu, X. Li, X. Xie, D. Zhao, L. Sun, J. Xu, J. Sun, S. Chen, L. Zhang, Z. Huang, S. Liu, W. Zhang, and G. Zhang, “The composition dependence and new assignment of the Raman spectrum in lithium tantalite,” Solid State Commun. 135 (4), 251–256 (2005). https://doi.org/10.1016/j.ssc.2005.04.024

    Article  ADS  Google Scholar 

  20. P. Xu, S. N. Zhu, X. Q. Yu, S. H. Ji, Z. D. Gao, G. Zhao, Y. Y. Zhu, and N. B. Ming, “Experimental studies of enhanced Raman scattering from a hexagonally poled LiTaO3 crystal,” Phys. Rev. B.72 (6), 064307 (2005). https://doi.org/10.1103/PhysRevB.72.064307

    Article  ADS  Google Scholar 

  21. L. Shi, Y. Kong, W. Yan, J. Sun, S. Chen, L. Zhang, W. Zhang, H. Liu, X. Li, X. Xie, D. Zhao, L. Sun, Z. Wang, J. Xu, and G. Zhang, “Determination of the composition of lithium tantalate by means of Raman and OH absorption measurements,” Mater. Chem. Phys. 95 (2-3), 229–234 (2006). https://doi.org/10.1016/j.matchemphys.2005.06.009

    Article  Google Scholar 

  22. A. G. Kuznetsov, V. K. Malinovsky, and N. V. Surovtsev, “Specific features in the behavior of the central peak in Raman spectra of lithium tantalate,” Phys. Solid State. 48 (12), 2317–2321 (2006). https://doi.org/10.1134/S1063783406120122

    Article  ADS  Google Scholar 

  23. A. Hushur, S. Gvasaliya, B. Roessli, S. Lushnikov, and S. Kojima, “Ferroelectric phase transition of stoichiometric lithium tantalate studied by Raman, Brillouin, and neutron scattering,” Phys. Rev. B.76 (6), 064104 (2007). https://doi.org/10.1103/PhysRevB.76.064104

    Article  ADS  Google Scholar 

  24. P. Capek, G. Stone, V. Dierolf, C. Althouse, and V. Gopolan, “Raman studies of ferroelectric domain walls in lithium tantalite and niobate,” Phys. Status Solidi C.4 (3), 830–833 (2007). https://doi.org/10.1002/pssc.200673720

    Article  ADS  Google Scholar 

  25. S. M. Kostritskii, M. Aillerie, P. Bourson, and D. Kip, “Raman spectroscopy study of compositional inhomogeneity in lithium tantalate crystals,” Appl. Phys. B.95 (1), 125–130 (2009). https://doi.org/10.1007/s00340-009-3442-y

    Article  ADS  Google Scholar 

  26. J. Suda, O. Kamishima, J. Kawamura, and T. Hattori, “Strong anharmonicity and lattice dynamics in LiTaO3 by Raman spectroscopy,” J. Phys.: Conf. Ser. 150, 052248 (2009). https://doi.org/10.1088/1742-6596/150/5/052248

    Article  Google Scholar 

  27. J. Suda, “Coupled phonons and transferred energies between Raman active phonons for LiTaO3 crystal,” Chin. J. Phys. 49 (1), 341–348 (2011). https://www.ps-taiwan.org/cjp/issues.php?vol=49&num=1

    Google Scholar 

  28. G. Stone and V. Dierolf, “Influence of ferroelectric domain walls on the Raman scattering process in lithium tantalate and niobate,” Opt. Lett. 37 (6), 1032–1034 (2012). https://doi.org/10.1364/OL.37.001032

    Article  ADS  Google Scholar 

  29. S. Margueron, A. Bartasyte, A. M. Glazer, E. Simon, J. Hlinka, I. Gregora, and J. Gleize, “Resolved E-symmetry zone-centre phonons in LiTaO3 and LiNbO3,” J. Appl. Phys. 111 (10), 104105 (2012). https://doi.org/10.1063/1.4716001

    Article  ADS  Google Scholar 

  30. S. Sanna, S. Neufeld, M. Rüsing, G. Berth, A. Zrenner, and W. G. Schmidt, “Raman scattering efficiency in LiTaO3 and LiNbO3 crystals,” Phys. Rev. B.91 (22), 224302 (2015). https://doi.org/10.1103/PhysRevB.91.224302

    Article  ADS  Google Scholar 

  31. V. S. Gorelik, N. V. Sidorov, and A. I. Vodchits, “Optical properties of lithium niobate and lithium tantalate crystals with impurities and defects,” Phys. Wave Phenom. 25 (1), 10–19 (2017). https://doi.org/10.3103/S1541308X17010022

    Article  ADS  Google Scholar 

  32. V. S. Gorelik, S. D. Abdurakhmonov, N. V. Sidorov, and M. N. Palatnikov, “Raman scattering in lithium niobate and lithium tantalate single crystals and ceramics,” Inorg. Mater. 55 (5), 524–532 (2019). https://doi.org/10.1134/S0020168519050066

    Article  Google Scholar 

  33. S. D. Abdurakhmonov and V. S. Gorelik, “Overtone Raman scattering in lithium tantalate single crystals,” Opt. Spectrosc. 127 (4), 587–590 (2019). https://doi.org/10.1134/S0030400X19100023

    Article  ADS  Google Scholar 

  34. X.-L. Wu, M.-S. Zhang, Q. Chen, Q. Zou, Z.-H. Geng, and D. Feng, “Raman spectroscopic study of Nd-doped lithium tantalite,” Acta Phys. Sin. (Overseas Ed.). 3 (7), 493–500 (1994). https://doi.org/10.1088/1004-423X/3/7/002

    Article  ADS  Google Scholar 

  35. X. L. Wu, M. S. Zhang, Q. Chen, and D. Feng, “E(transverse optical)-mode properties in the LiTaO3:Nd crystal at room temperature,” Appl. Phys. A.60 (3), 317–320 (1995). https://doi.org/10.1007/BF01538411

    Article  ADS  Google Scholar 

  36. X.-L. Wu, Z.-Q. Zhang, A. Hu, M.-S. Zhang, S.-S. Jiang, and D. Feng, “Microstructural study of Nd-doped LiTaO3,” Appl. Phys. Lett. 67 (17), 2450–2452 (1995). https://doi.org/10.1063/1.114604

    Article  ADS  Google Scholar 

  37. X.-L. Wu, M.-S. Zhang, F. Yan, and D. Feng, “Localized vibration in proton-exchanged LiNbO3 and LiTaO3 crystals,” Solid State Commun. 93 (2), 131–134 (1995). https://doi.org/10.1016/0038-1098(94)00673-3

    Article  ADS  Google Scholar 

  38. X.-L. Wu, M.-S. Zhang, and D. Feng, “Raman spectroscopic study of proton-exchanged LiTaO3 crystals,” Phys. Status Solidi A.153 (1), 233–238 (1996). https://doi.org/10.1002/pssa.2211530123

    Article  ADS  Google Scholar 

  39. X.-L. Wu, F. Yan, M.-S. Zhang, S.-S. Jiang, and D. Feng, “The microstructural difference between proton-exchanged LiNbO3 and LiTaO3 crystals by Raman spectroscopy,” J. Phys.: Condens. Matter. 8 (12), 2073–2080 (1996). https://doi.org/10.1088/0953-8984/8/12/019

    Article  ADS  Google Scholar 

  40. B. Lahbabi, M. Zriouil, A. Assani, R. Mouras, B. Elouadi, and P. Bourson, “Raman spectroscopy study of the new LiTaO3-related solid solutions B: Li1+xTa1–x/2Co3x/4O3 inside the system Li2O-Ta2O5-(CoO)2,” J. Phys. IV France. 123, 219–223 (2005). https://doi.org/10.1051/jp4:2005123038

    Article  Google Scholar 

  41. L. L. Pang, Z. G. Wang, C. F. Yao, H. Zang, Y. F. Li, J. R. Sun, T. L. Shen, K. F. Wei, Y. B. Zhu, Y. B. Sheng, M. H. Cui, and Y. F. Jin, “The structural modification of LiTaO3 crystal induced by 100-keV H-ion implantation,” Chin. Phys. Lett. 29 (6), 066801 (2012). https://doi.org/10.1088/0256-307X/29/6/066801

    Article  ADS  Google Scholar 

  42. Yu. I. Yuzyuk, “Raman scattering spectra of ceramics, films, and superlattices of ferroelectric perovskites: A review,” Phys. Solid State. 54 (5), 1026–1059 (2012). https://doi.org/10.1134/S1063783412050502

    Article  ADS  Google Scholar 

  43. R. H. Lyddane, R. G. Sachs, and E. Teller, “On the polar vibrations of alkali halides,” Phys. Rev. 59 (8), 673–676 (1941). https://doi.org/10.1103/PhysRev.59.673

    Article  ADS  MATH  Google Scholar 

  44. V. L. Ginzburg, “The scattering of light near points of phase transition in solids,” Sov. Phys.-Usp. 5 (4), 649–660 (1963). https://doi.org/10.1070/PU1963v005n04ABEH003446

    Article  ADS  Google Scholar 

  45. V. L. Ginzburg, A. P. Levanyuk, and A. A. Sobyanin, “Light scattering near phase transition points in solids,” Phys. Rep. 57(3), 151–240 (1980). https://doi.org/10.1016/0370-1573(80)90117-9

    Article  ADS  Google Scholar 

  46. S. C. Abrahams and J. L. Bernstein, “Ferroelectric lithium tantalate—1. Single crystal X-ray diffraction study at 24°C,” J. Phys. Chem. Solids. 28 (9), 1685–1692 (1967). https://doi.org/10.1016/0022-3697(67)90142-4

    Article  ADS  Google Scholar 

  47. Y. Yamada, N. Niizeki, and H. Toyoda, “Curie point and lattice constants of lithium tantalite,” Jpn. J. Appl. Phys. 7 (3), 298B (1968). https://doi.org/10.1143/JJAP.7.298B

    Article  ADS  Google Scholar 

  48. S. Huband, D. S. Keeble, N. Zhang, A. M. Glazer, A. Bartasyte, and P. A. Thomas, “Relationship between the structure and optical properties of lithium tantalate at the zero-birefringence point,” J. Appl. Phys. 121 (2), 024102 (2017). https://doi.org/10.1063/1.4973685

    Article  ADS  Google Scholar 

  49. Yu. S. Kuz’minov, Lithium Niobate and Tantalate: Materials for Nonlinear Optics (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  50. M. S. Dresselhaus, G. Dresselhaus, and A. Jorio, Group Theory: Application to the Physics of Condensed Matter (Springer, Berlin, 2008).

    MATH  Google Scholar 

  51. V. S. Gorelik and A. Yu. Pyatyshev, “Raman scattering on the effective soft mode for lithium niobate crystals,” Bull. Russ. Acad. Sci.: Phys. 82 (3), 299–303 (2018). https://doi.org/10.3103/S1062873818030097

    Article  Google Scholar 

  52. V. S. Gorelik, A. Yu. Pyatyshev, and A. S. Krylov, “Raman scattering in sodium nitrite crystals near the phase transition,” Phys. Solid State. 58 (1), 170–176 (2016). https://doi.org/10.1134/S1063783416010133

    Article  ADS  Google Scholar 

  53. V. S. Gorelik and A. Yu. Pyatyshev, “Raman opalescence of a destabilizing soft mode near the phase transition in quartz monocrystals,” J. Raman Spectrosc. 50 (10), 1584–1593 (2019). https://doi.org/10.1002/jrs.5651

    Article  ADS  Google Scholar 

  54. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics. Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Butterworth-Heinemann, Oxford, 1991).

  55. J. F. Scott, “Soft-mode spectroscopy: Experimental studies of structural phase transitions,” Rev. Mod. Phys. 46 (1), 83–128 (1974). https://doi.org/10.1103/RevModPhys.46.83

    Article  ADS  Google Scholar 

  56. H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford Univ. Press, Oxford, 1971).

    Google Scholar 

  57. W. Cochran, “Crystal stability and the theory of ferroelectricity,” Adv. Phys. 9 (36), 387–423 (1960). https://doi.org/10.1080/00018736000101229

    Article  ADS  MATH  Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research, project nos. 18-02-00181 and 18-32-00259mol_a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Gorelik.

Additional information

Translated by M. Potapov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorelik, V.S., Pyatyshev, A.Y. Anomalous Increase in Spectral Intensity of Soft-Mode Raman Scattering near the Temperature of the Ferroelectric Phase Transition in Lithium Tantalate Crystals. Phys. Wave Phen. 28, 241–249 (2020). https://doi.org/10.3103/S1541308X20030085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X20030085

Navigation