Skip to main content
Log in

Temporal Dynamics of the Scattering Properties of Deionized Water

  • TERAHERTZ AND OPTICAL SPECTROSCOPY OF WATER AND AQUEOUS SOLUTIONS
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

Changes occurring in deionized water with time, recorded by dynamic light scattering, have been investigated. It is demonstrated that the mean size of optical inhomogeneities in deionized water, formed under an external mechanical impact, depends on the storage time of water (from its preparation to mechanical impact). Presumably, these optical inhomogeneities can be considered as submicron air bubbles. The recorded changes in sizes occurring in the course of time may be related to the saturation of water with air and increase in its ionic strength. It is also shown that a mechanical impact on water is a complex physical process changing its physicochemical properties and that the consequences of mechanical impact on water are retained for at least a week. The data obtained may be useful for standardizing the deionized water used in experimental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. V. I. Tikhonov and A. A. Volkov, “Separation of water into its ortho and para isomers,” Science. 296 (5577), 2363 (2002). https://doi.org/10.1126/science.1069513

    Article  Google Scholar 

  2. N. F. Bunkin and F. V. Bunkin, “Bubbstons: Stable microscopic gas bubbles in very dilute electrolytic solutions,” Sov. Phys.-JETP. 74, 271–278 (1992).

    Google Scholar 

  3. K. Liu, J. D. Cruzan, and R. J. Saykally, “Water clusters,” Science. 271 (5251), 929–933 (1996). https://doi.org/10.1126/science.271.5251.929

    Article  ADS  Google Scholar 

  4. A. I. Konovalov, I. S. Ryzhkina, L. I. Murtazina, and Y. V. Kiseleva, “Forming the nanosized molecular assemblies (nanoassociates) is a key to understand the properties of highly diluted aqueous solutions,” Biophysics (Moscow). 59 (3), 341–346 (2014). https://doi.org/10.1134/S0006350914030142

    Article  Google Scholar 

  5. G. A. Askar’yan, A. M. Prokhorov, G. F. Chanturiya, and G. P. Shipulo, “The effects of a laser beam in liquid,” Sov. Phys.-JETP. 17, 1463–1465 (1963).

    Google Scholar 

  6. M. W. Scheeler, W. M. van Rees, H. Kedia, D. Kleckner, and W. T. M. Irvine, “Complete measurement of helicity and its dynamics in vortex tubes,” Science. 357 (6350), 487–491 (2017). https://doi.org/10.1126/science.aam6897

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. S. V. Gudkov, G. A. Lyakhov, V. I. Pustovoy, and I. A. Shcherbakov, “Influence of mechanical effects on the hydrogen peroxide concentration in aqueous solutions,” Phys. Wave Phenom. 27 (2), 141–144 (2019). https://doi.org/10.3103/S1541308X19020092

    Article  ADS  Google Scholar 

  8. P. Attard, “The stability of nanobubbles,” Eur. Phys. J.: Spec. Top. 223 (5), 893–914 (2014). https://doi.org/10.1140/epjst/e2013-01817-0

    Article  Google Scholar 

  9. F. Y. Ushikubo, T. Furukawa, R. Nakagawa, M. Enari, Y. Makino, Y. Kawagoe, T. Shiina, and S. Oshita, “Evidence of the existence and the stability of nano-bubbles in water,” Colloids Surf., A.361 (1-3), 31–37 (2010). https://doi.org/10.1016/j.colsurfa.2010.03.005

    Article  Google Scholar 

  10. N. F. Bunkin and F. V. Bunkin, “Bubston structure of water and aqueous solutions of electrolytes,” Phys. Wave Phenom. 21 (2), 81–109 (2013). https://doi.org/10.3103/S1541308X13020015

    Article  ADS  Google Scholar 

  11. S. O. Yurchenko, A. V. Shkirin, B. W. Ninham, A. A. Sychev, V. A. Babenko, N. V. Penkov, N. P. Kryuchkov, and N. F. Bunkin, “Ion-specific and thermal effects in the stabilization of the gas nanobubble phase in bulk aqueous electrolyte solutions,” Langmuir. 32 (43), 11245–11255 (2016). https://doi.org/10.1021/acs.langmuir.6b01644

    Article  Google Scholar 

  12. N. F. Bunkin, A. V. Shkirin, N. V. Suyazov, V. A. Babenko, A. A. Sychev, N. V. Penkov, K. N. Belosludtsev, and S. V. Gudkov, “Formation and dynamics of ion-stabilized gas nanobubble phase in the bulk of aqueous NaCl solutions,” J. Phys. Chem. B.120 (7), 1291–1303 (2016). https://doi.org/10.1021/acs.jpcb.5b11103

    Article  Google Scholar 

  13. N. F. Bunkin, A. V. Shkirin, N. V. Suyazov, L. L. Chaikov, S. N. Chirikov, M. N. Kirichenko, S. D. Nikiforov, and S. I. Tymper, “Influence of low concentrations of scatterers and signal detection time on the results of their measurements using dynamic light scattering,” Quantum Electron. 47 (10), 949–955 (2017).

    Article  ADS  Google Scholar 

  14. N. F. Bunkin and A. V. Shkirin, “Nanobubble clusters of dissolved gas in aqueous solutions of electrolyte. II. Theoretical interpretation,” J. Chem. Phys. 137 (5), 054707 (2012). https://doi.org/10.1063/1.4739530

    Article  ADS  Google Scholar 

  15. K. S. Martinho, V. D. B. Bento, G. U. Benvenga, V. A. Marcondes, and L. V. Bonamin, “Hepatic cell growth models for the study of ultra high dilutions,” in Signals and Images: Contributions and Contradictions of High Dilution Research, Ed. by L. V. Bonamin (Springer, Dordrecht, 2008), pp. 83–96.

    Google Scholar 

  16. N. V. Penkov, “Peculiarities of the perturbation of water structure by ions with various hydration in concentrated solutions of CaCl2, CsCl, KBr, and KI,” Phys. Wave Phenom. 27 (2), 128–134 (2019). https://doi.org/10.3103/S1541308X19020079

    Article  ADS  Google Scholar 

  17. P. S. Chikramane, D. Kalita, A. K. Suresh, S. G. Kane, and J. R. Bellare, “Why extreme dilutions reach non-zero asymptotes: A nanoparticulate hypothesis based on froth flotation,” Langmuir. 28 (45), 15864–15875 (2012). https://doi.org/10.1021/la303477s

    Article  Google Scholar 

  18. N. F. Bunkin, A. V. Shkirin, N. V. Penkov, S. N. Chirikov, P. S. Ignatiev, and V. A. Kozlov, “The physical nature of mesoscopic inhomogeneities in highly diluted aqueous suspensions of protein particles,” Phys. Wave Phenom. 27 (2), 102–112 (2019). https://doi.org/10.3103/S1541308X19020043

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGEMENTS

This work was performed on the equipment of the Optical Microscopy and Spectrophotometry core facility of the Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences” (http://www.ckp-rf.ru/ckp/670266/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Penkov.

Additional information

Translated by Yu. Sin’kov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Penkov, N.V. Temporal Dynamics of the Scattering Properties of Deionized Water. Phys. Wave Phen. 28, 135–139 (2020). https://doi.org/10.3103/S1541308X20020132

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X20020132

Navigation