Skip to main content
Log in

Hydrogen-bond Network of Water and Irradiation Effects

  • STRUCTURE AND THERMODYNAMICS OF WATER AND AQUEOUS SOLUTIONS WITH HYDROGEN BONDS
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract—

Results obtained in nonempirical simulations of neutral and positively charged (H2O)n water clusters with n up to 20 in the ground and excited electronic states carried out with the use of the second order Møller–Plesset perturbation theory and configuration interaction method with single and double excitations form the basis for the analysis of diverse processes promoted by the irradiation of water specimens with near and mid-range ultraviolet light with an emphasis on production of radical particles. Ionization of local H‑bonded domains results in the formation of hydronium cations and hydroxyl radicals. Concurrently, the electronic excitation and the ionization followed by the recombination of cations with hydrated electrons are shown to cause the appearance of hydrogen atoms and OH radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. W. E. Thiessen and A. H. Narten, “Neutron diffraction study of light and heavy water mixtures at 25°C,” J. Chem. Phys. 77 (5), 2656–2662 (1982). https://doi.org/10.1063/1.444090

    Article  ADS  Google Scholar 

  2. H. Narten, W. E. Thiessen, and L. Blum, “Atom pair distribution functions of liquid water at 25°C from neutron diffraction,” Science. 217 (4654), 1033–1034 (1982). https://doi.org/10.1126/science.217.4564.1033

    Article  ADS  Google Scholar 

  3. D. Chandler, M. Rigby, P. A. Monson, D. J. Tildesley, W. B. Streett, W. R. Smith, P. A. Madden, J. M. Haile, W. A. Steele, J. S. Rowlinson, J. C. Dore, I. P. Gibson, J. L. Finney, G. Pálinkás, J. L. Rivail, H. J. C. Berendsen, P. Bordewijk, K. Singer, D. J. Adams, J. N. Murrell, and E. B. Smith, “Structure and motion in molecular liquids,” in “General discussion,” Faraday Discuss. Chem. Soc. 66, 71–94 (1978). https://doi.org/10.1039/DC9786600071

    Article  Google Scholar 

  4. M. R. Chowdhury, J. C. Dore, and D. G. Montague, “Neutron diffraction studies and CRN model of amorphous ice,” J. Phys. Chem.87 (21), 4037–4039 (1983). https://doi.org/10.1021/j100244a007

    Article  Google Scholar 

  5. K. Shimaoka, “Electron diffraction study of ice,” J. Phys. Soc. Jpn. 15 (1), 106–119 (1960). https://doi.org/10.1143/JPSJ.15.106

    Article  ADS  Google Scholar 

  6. E. Kálmán, G. Pálinkás, and P. Kovács, “Liquid water. I. Electron scattering,” Mol. Phys. 34 (2), 505–524 (1977). https://doi.org/10.1080/00268977700101871

    Article  ADS  Google Scholar 

  7. G. Hura, D. Russo, R. M. Glaeser, T. Head-Gordon, M. Krack, and M. Parrinello, “Water structure as a function of temperature from X-ray scattering experiments and ab initio molecular dynamics,” Phys. Chem. Chem. Phys. 5 (10), 1981–1991 (2003). https://doi.org/10.1039/B301481A

    Article  Google Scholar 

  8. S. Yeremenko, M. S. Pshenichnikov, and D. A. Wiersma, “Hydrogen-bond dynamics in water explored by heterodyne-detected photon echo,” Chem. Phys. Lett. 369 (1-2), 107–113 (2003). https://doi.org/10.1016/S0009-2614(02)02001-8

    Article  ADS  Google Scholar 

  9. S. Woutersen, U. Emmerichs, and H. J. Bakker, “Femtosecond mid-IR pump-probe spectroscopy of liquid water: Evidence for a two-component structure,” Science. 278 (5338), 658–660 (1997). https://doi.org/10.1126/science.278.5338.658

    Article  ADS  Google Scholar 

  10. C. P. Lawrence and J. L. Skinner, “Ultrafast infrared spectroscopy probes hydrogen-bonding dynamics in liquid water,” Chem. Phys. Lett. 369 (3-4), 472–477 (2003). https://doi.org/10.1016/S0009-2614(02)02039-0

    Article  ADS  Google Scholar 

  11. T. Inoue and S. Kotake, “Formation of water clusters in a free molecular jet of binary mixtures,” J. Chem. Phys. 91 (1), 162–169 (1989). https://doi.org/10.1063/1.457495

    Article  ADS  Google Scholar 

  12. Yu. V. Novakovskaya, “Structure reorganization dynamics of water clusters upon vertical ionization: Quantum chemical investigation,” Russ. J. Phys. Chem. A.81 (2), 216–224 (2007). https://doi.org/10.1134/S0036024407020136

    Article  Google Scholar 

  13. Yu. V. Novakovskaya, “Adiabatic ionization of water clusters: Nonempirical dynamic model,” Russ. J. Phys. Chem. A.81 (2), 225–234 (2007). https://doi.org/10.1134/S0036024407020148

    Article  Google Scholar 

  14. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, Jr., “The general atomic and molecular electronic structure system,” J. Comput. Chem. 14 (11), 1347–1363 (1993). https://doi.org/10.1002/jcc.540141112

    Article  Google Scholar 

  15. A. A. Granovsky, Firefly version 8.2. http://classic.chem.msu.su/gran/firefly/index.html

  16. V. Sadovnichy, A. Tikhonravov, V. Voevodin, and V. Opanasenko, “Lomonosov”: Supercomputing at Moscow State University,” in Contemporary High Performance Computing: From Petascale toward Exascale, Ed. by J. S. Vetter (CRC Press, Boca Raton, 2013), pp. 283–307.

    Google Scholar 

  17. M. Michaud, P. Cloutier, and L. Sanche, “Low-energy electron-energy-loss spectroscopy of amorphous ice: Electronic excitations,” Phys. Rev. A.44 (9), 5624–5627 (1991). https://doi.org/10.1103/PhysRevA.44.5624

    Article  ADS  Google Scholar 

  18. S. Yamagguchi, S. Kudoh, Y. Kawai, Y. Okada, T. Orii, and K. Takeuchi, “Collisional reaction of water cluster cations \(({{H}_{2}}O)_{n}^{ + }\) (n = 2 and 3) with D2O,” Chem. Phys. Lett. 377 (1-2), 37–42 (2003). https://doi.org/10.1016/S0009-2614(03)01085-6

    Article  ADS  Google Scholar 

  19. L. Angel and A. J. Stace, “Dissociation patterns of \(({{H}_{2}}O)_{n}^{ + }\) cluster ions for n = 2–6,” Chem. Phys. Lett. 345 (3-4), 277–281 (2001). https://doi.org/10.1016/S0009-2614(01)00891-0

    Article  ADS  Google Scholar 

  20. S. P. de Visser, L. J. de Koning, and N. M. M. Nibbering, “Reactivity and thermochemical properties of the water dimer radical cation in the gas phase,” J. Phys. Chem. 99 (42), 15444–15447 (1995). https://doi.org/10.1021/j100042a017

    Article  Google Scholar 

  21. M. Tuckerman, K. Laasonen, M. Sprik, and M. Parrinello, “Ab initio molecular dynamics simulation of the solvation and transport of hydronium and hydroxyl ions in water,” J. Chem. Phys. 103 (1), 150–161 (1995). https://doi.org/10.1063/1.469654

    Article  ADS  Google Scholar 

  22. J. Lobaugh and G. A. Voth, “The quantum dynamics of an excess proton in water,” J. Chem. Phys. 104 (5), 2056–2069 (1996). https://doi.org/10.1063/1.470962

    Article  ADS  Google Scholar 

  23. R. Vuilleumier and D. Borgis, “An extended empirical valence bond model for describing proton transfer in H+(H2O)n clusters and liquid water,” Chem. Phys. Lett. 284 (1-2), 71–77 (1998). https://doi.org/10.1016/S0009-2614(97)01365-1

    Article  ADS  Google Scholar 

  24. Yu. V. Novakovskaya, “Dynamics of water clusters upon UV-excitation leading to ionization: Nonempirical study,” Int. J. Quantum Chem. 107 (14), 2763–2780 (2007). https://doi.org/10.1002/qua.21365

    Article  ADS  Google Scholar 

  25. S. K. Chulkov, N. F. Stepanov, and Yu. V. Novakovskaya, “Stationary states and dissociation of H3O radical in water clusters,” Russ. J. Phys. Chem. A.83 (5), 798–808 (2009). https://doi.org/10.1134/S0036024409050203

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Novakovskaya.

Additional information

The text was submitted by the author in English.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novakovskaya, Y.V. Hydrogen-bond Network of Water and Irradiation Effects. Phys. Wave Phen. 28, 161–167 (2020). https://doi.org/10.3103/S1541308X20020120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X20020120

Navigation