Peculiarities of the Perturbation of Water Structure by Ions with Various Hydration in Concentrated Solutions of CaCl2, CsCl, KBr, and KI

Abstract

The degree of water structuring in solutions of four salts (CsCl, KBr, and KI with a concentration of 1M and CaCl2 with a concentration of 0.5M) has been analyzed using THz time-domain spectroscopy. It is shown that the degree of water structuring in a solution of salt, prepared based on a highly diluted aqueous solution of the same salt, differs in some cases from the degree of structuring of similar solutions prepared on the basis of highly diluted aqueous solutions of other salts and similarly prepared water. The degree of water structuring increases in salt solutions containing ions with pronounced positive hydration, decreases in salt solutions containing ions with pronounced negative hydration, and does not differs from control in salt solutions containing no ions with pronounced positive or negative hydration.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    O.Ya. Samoilov, Structure of Aqueous Solutions of Electrolytes and Ion Hydration (USSR Academy of Sciences, Moscow, 1957) [in Russian].

    Google Scholar 

  2. 2.

    http://www1.lsbu.ac.uk/water/kosmotropes-chaotropes.html

  3. 3.

    A.N. Glebov and A.R. Budanov, “Structural and Dynamic Properties of Aqueous Electrolyte Solutions,” Soros Obraz. Zh. No. 9, 72 (1996) [in Russian].

    Google Scholar 

  4. 4.

    A. Cusanelli, U. Frey, D.T. Richens, and A.E.J. Merbach, “The Slowest Water Exchange at a Homoleptic Mononuclear Metal Center: Variable-Temperature and Variable-Pressure 17O NMR Study on [Ir(H2O)6]3+,” Am. Chem. Soc. 118, 5265 (1996).

    Article  Google Scholar 

  5. 5.

    E. Don, O. Farafonova, S. Pokhil, D. Barykina, M. Nikiforova, D. Shulga, A. Borshcheva, S. Tarasov, T. Ermolaeva, and O. Epstein, “Use of Piezoelectric Immunosensors for Detection of Interferon-Gamma Interaction with Specific Antibodies in the Presence of Released-Active Forms of Antibodies to Interferon- Gamma,” Sensors. 16, 96 (2016).

    Article  Google Scholar 

  6. 6.

    E.S. Don, S.A. Bobrovnik, G. Sherriff, A.A. Myslivets, S.A. Tarasov, and O.I. Epstein, “Advanced Approach to Activity Evaluation for Released-Active Forms of Antibodies to Interferon-Gamma by Enzyme-Linked Immunoassay,” J. Immunoassay Immunochem. p. 1 (2019) [DOI: 10.1080/15321819.2019.1567536].

    Google Scholar 

  7. 7.

    E.V. Kardash, I. Ertuzun, G.R. Khakimova, A.N. Kolyadin, S.A. Tarasov, S. Wagner, E. Andriambeloson, V.T. Ivashkin, and O.I. Epstein, “Dose-Response Effect of Antibodies to S100 Protein and Cannabinoid Receptor Type 1 in Released-Active Form in the Light-Dark Test in Mice,” Dose-Response. 16(2) (2018) [DOI: 10.1177/1559325818779752].

    Google Scholar 

  8. 8.

    M. Pschenitza, E.S. Gavrilova, S.A. Tarasov, D. Knopp, R. Niessner, and O.I. Epstein, “Application of a Heterogeneous Immunoassay for the Quality Control Testing of Release-Active Forms of Diclofenac,” Int. Immunopharmacol. 21, 225 (2014).

    Article  Google Scholar 

  9. 9.

    V. Castagne, M. Lemaire, I. Kheyfets, J.L. Dugina, S.A. Sergeeva, and O.I. Epstein, “Antibodies to S100 Proteins Have Anxiolytic-Like Activity at Ultra-Low Doses in the Adult Rat,” J. Pharm. Pharmacol. 60, 309.(2008).

    Article  Google Scholar 

  10. 10.

    10. A.V. Syroeshkin, T.V. Pletneva, M.A. Morozova, E.V. Uspenskaya, O.V. Titorovich, E.V. Lesnikov, and V.I. Dobrovolsky, “The Possibility of Using Laser Methods for the Quality Control of Highly Diluted Liquid Pharmaceuticals,” Bull. Sci. Centre Exp. Eval. Med. Prod. 3, 31 (2016).

    Google Scholar 

  11. 11.

    I.S. Ryzhkina, L.I. Murtazina, U.V. Kiseleva, and A.I. Konovalov, “Self-Organization and Physicochemical Properties of Aqueous Solutions of the Antibodies to Interferon Gamma at Ultrahigh Dilution,” Dokl. Phys. Chem. 462(1), 110 (2015) [DOI: 10.1134/S0012501615050048].

    Article  Google Scholar 

  12. 12.

    I.S. Ryzhkina, Y.V. Kiseleva, O.A. Mishina, L.I. Murtazina, A.I. Litvinov, M.K. Kadirov, and A.I. Konovalov, “Self-Organization and Properties of Dilute Aqueous Solutions of Cetyltrimethylammonium Bromide in a Range of Physiologically Important Temperatures,” Russ. Chem. Bull. 64(3), 579 (2015).

    Article  Google Scholar 

  13. 13.

    O. Epstein, “The Spatial Homeostasis Hypothesis,” Symmetry. 10(4), 103 (2018) [DOI: 10.3390/sym10040103].

    Article  Google Scholar 

  14. 14.

    A.R. von Hippel, “The Dielectric Relaxation Spectra of Water, Ice, and Aqueous Solutions, and Their Interpretation. 2. Tentative Interpretation of the Relaxation Spectrum of Water in the Time and Frequency Domain,” IEEE Trans. Electr. Insul. 23(5), 817. (1988) [DOI: 10.1109/14.8746].

    Article  Google Scholar 

  15. 15.

    D. Laage and J.T. Hynes, “A Molecular Jump Mechanism of Water Reorientation,” Science. 311, 832 (2006).

    ADS  Article  Google Scholar 

  16. 16.

    J. Barthel, K. Bachhuber, R. Buchner, and H. Hetzenauer, “Dielectric Spectra of Some Common Solvents in the Microwave Region. Water and Lower Alcohols,” Chem. Phys. Lett. 165(4), 369 (1990) [DOI: 10.1016/0009-2614(90)87204-5].

    ADS  Article  Google Scholar 

  17. 17.

    H. Yada, M. Nagai, and K. Tanaka, “Origin of the Fast Relaxation Component of Water and Heavy Water Revealed by Terahertz Time Domain Attenuated Total Reflection Spectroscopy,” Chem. Phys. Lett. 464, 166 (2008).

    ADS  Article  Google Scholar 

  18. 18.

    A.Y. Zasetsky, “Dielectric Relaxation in Liquid Water: Two Fractions or Two Dynamics?” Phys. Rev. Lett. 107, 117601 (2011).

    ADS  Article  Google Scholar 

  19. 19.

    N.V. Penkov, N.E. Shvirst, V.A. Yashin, and E.E. Fesenko, “On Singularities of Molecular Relaxation in Water Solutions,” Biophysics. 58(6), 731 (2013) [DOI: 10.1134/S000635091306016X].

    Article  Google Scholar 

  20. 20.

    N.V. Penkov, V.A. Yashin, E.E. Fesenko, Jr., and E.E. Fesenko, “Calculation of the Amount of Free Water Molecules in Aqueous Solutions by Means of Spectral Parameters from the Terahertz Frequency Domain Taking into Account Processes of Screening,” Biophysics. 59(3), 347 (2014) [DOI: 10.1134/S0006350914030178].

    Article  Google Scholar 

  21. 21.

    G.E. Walrafen, M.R. Fisher, M.S. Hokmabadi, and W.-H. Yang, “Temperature Dependence of the Lowand High-Frequency Raman Scattering from Liquid Water,” J. Chem. Phys. 85, 6970 (1986).

    ADS  Article  Google Scholar 

  22. 22.

    J.B. Hasted, S.K. Husain, F.A.M. Frescura, and J.R. Birch, “Far-Infrared Absorption in Liquid Water,” Chem. Phys. Lett. 118, 622 (1985).

    ADS  Article  Google Scholar 

  23. 23.

    V.A. Rabinovich and Z.Ya. Havin, Short Chemical Guide (Khimiya, Leningrad, 1978) [in Russian].

    Google Scholar 

  24. 24.

    Y.Z. Wei, P. Chiang, and S. Sridhar, “Ion Size Effects on the Dynamic and Static Dielectric Properties of Aqueous Alkali Solutions,” J. Chem. Phys. 96(6), 4569.(1992).

    ADS  Article  Google Scholar 

  25. 25.

    A.V. Kobelev, A.S. Lileev, and A.K. Lyashchenko, “Microwave Dielectric Properties of Aqueous Potassium Iodide Solutions As a Function of Temperature,” Russ. J. Inorg. Chem. 56(4), 652 (2011).

    Article  Google Scholar 

  26. 26.

    Ya.Yu. Ahadov, Dielectric Properties of Binary Solutions (Nauka, Moscow, 1977) [in Russian].

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. V. Penkov.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Penkov, N.V. Peculiarities of the Perturbation of Water Structure by Ions with Various Hydration in Concentrated Solutions of CaCl2, CsCl, KBr, and KI. Phys. Wave Phen. 27, 128–134 (2019). https://doi.org/10.3103/S1541308X19020079

Download citation