Skip to main content
Log in

Mesodroplet Heterogeneity of Low-Concentration Aqueous Solutions of Polar Organic Compounds

  • Optical Diagnostic Methods of Droplet Phase of Aqueous Solutions
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

It is found experimentally that a mesoscopic droplet phase is formed in low-concentration aqueous solutions of various polar organic compounds, which are considered in the chemical literature as infinitely soluble in water. The content of dissolved organic molecules in droplets is much higher than in the ambient solution. The droplet size increases with temperature. Theory can explain the mesodroplet formation by the phase separation of a binary mixture affected by the dichotomous noise of twinkling hydrogen bonds between molecules of organic compound and water. The Snyder polarity index, which is used by chemists as a miscibility criterion for molecular compounds, depends in the model on the dipole moments of mixed molecules and the energy and number of hydrogen bonds. With this refinement, it can be used as an estimation criterion for the existence and intensity (i.e., the number of droplets per unit volume of organic aqueous solution) of mesodroplet separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Iwasaki and T. Fujiyama, “Light-Scattering Study of Clathrate Hydrate Formation in BinaryMixtures of Tert-Butyl Alcohol and Water,” J. Phys. Chem. 81, 1908 (1977).

    Article  Google Scholar 

  2. N. Ito, T. Kato, and T. Fujiyama, “Determination of Local Structure and Moving Unit Formed in Binary Solution of f-Butyl Alcohol and Water,” Bull. Chem. Soc. Jpn. 54, 2573 (1981).

    Article  Google Scholar 

  3. S. Samal and K. Geckeler, “Unexpected Solute Aggregation in Water on Dilution,” Chem. Commun. 21, 2224 (2001).

    Article  Google Scholar 

  4. F. Jin, J. Ye, L. Hong, H. Lam, and C. Wu, “Slow Relaxation Mode in Mixtures of Water and Organic Molecules: Supramolecular Structures or Nanobubbles?” J. Phys. Chem. B. 111, 2255 (2007).

    Article  Google Scholar 

  5. A.I. Rusanov and A.G. Nekrasov, “One More Extreme near the Critical Micelle Concentration: Optical Activity,” Langmuir. 26, 13767 (2010).

    Article  Google Scholar 

  6. D. Hagmeyer, J. Ruesing, T. Fenske, H.W. Klein, C. Schmuck, W. Schrader, M.E.M. da Piedade, and M. Epple, “Direct Experimental Observation of the Aggregation of α-Amino Acids into 100–200 nm Clusters in Aqueous Solution,” RSCAdv. 2(11) 4690 (2012).

    Google Scholar 

  7. M. Sedlák and D. Rak, “Large-Scale Inhomogeneities in Solutions of Low Molar Mass Compounds and Mixtures of Liquids: Supramolecular Structures or Nanobubbles?” J. Phys. Chem. B. 117, 2495 (2013).

    Article  Google Scholar 

  8. D. Subramanian and M.A. Anisimov, “Resolving the Mystery of Aqueous Solutions of Tertiary Butyl Alcohol,” J. Phys. Chem. B. 115(29) 9179 (2011).

    Article  Google Scholar 

  9. D. Subramanian, C. Boughter, J. Klauda, B. Hammouda, and M.A. Anisimov, “Mesoscale Inhomogeneities in Aqueous Solutions of Small Amphiphilic Molecules,” Faraday Discuss. 167, 217 (2013).

    Article  ADS  Google Scholar 

  10. A.E. Robertson, D.H. Phan, J.E. Macaluso, V.N. Kuryakov, I.K. Yudin, E.V. Jouravleva, C.E. Bertrand, and M.A. Anisimov, “Mesoscale Solubilization and Critical Phenomena in Binary And Quasi-Binary Solutions of Hydrotropes,” Fluid Phase Equil. 407, 243 (2016).

    Article  Google Scholar 

  11. N.F. Bunkin, G.A. Lyakhov, A.V. Shkirin, S.V. Krivokhizha, A.A. Afonin, A.V. Kobelev, N.V. Penkov, and E.E. Fesenko, Jr., “Laser Diagnostics of the Mesoscale Heterogeneity of Aqueous Solutions of Polar Organic Compounds,” Phys. Wave Phenom. 26(1) 21 (2018) [DOI: 10.3103/S1541308X18010041].

    Article  ADS  Google Scholar 

  12. P.D. Todorov, P.A. Kralchevsky, N.D. Denkov, G. Broze, and A. Mehreteab, “Kinetics of Solubilization of n-Decane and Benzene by Micellar Solutions of Sodium Dodecyl Sulfate,” J. Coll. Int. Sci. 245, 371 (2002).

    Article  ADS  Google Scholar 

  13. M.F. Vuks, L.I. Lisnyanskii, and L.V. Shurupova, “Concentration Fluctuations and Light Scattering in Aqueous Solutions of Propyl Alcohols,” in Water in Biological Systems. Ed. by M.F. Vuks, (Springer, N.Y., 1971). Vol. 2.

  14. M.F. Vuks, Light Scattering in Gases, Liquids, and Solutions (Leningrad State Univ., Leningrad, 1977) [in Russian].

    Google Scholar 

  15. B. Lindman and P. Alexandridis, “Amphiphilic Molecules: Small and Large,” in Amphiphilic Block Copolymers: Self-Assembly and Applications. Ed. by P. Alexandridis and B. Lindman, (Elsevier, Amsterdam, 2000).

    Google Scholar 

  16. L.R. Snyder, “Classification of the Solvent Properties of Common Liquids,” J. Chromatogr. A. 92(2) 223 (1974).

    Article  Google Scholar 

  17. L.D. Landau and E.M. Lifshitz, Course of Theoretical Physics. Vol. 5: Fluid Mechanics (Pergamon, Oxford, 1987).

    Google Scholar 

  18. C. Okpala, A. Gulseppi-Elie, and D.M. Maharajh, “Several Properties of 1, 1, 3, 3-Tetramethylurea-Water Systems,” J. Chem. Eng. Data. 25(4) 384 (1980).

    Article  Google Scholar 

  19. R. Gupta and G.N. Pateya, “Structure and Aggregation in Model Tetramethylurea Solutions,” J. Chem. Phys. 141, 064502 (2014).

    Article  ADS  Google Scholar 

  20. CRC Handbook of Chemistry and Physics. Ed. by D.R. Lide (CRC Press, Boca Raton, 2009–2010).

    Google Scholar 

  21. N. Penkov, N. Shvirst, V. Yashin, E. Fesenko, Jr., and E. Fesenko, “Terahertz Spectroscopy Applied for Investigation of Water Structure,” J. Phys. Chem. B. 119, 12664 (2015).

    Article  Google Scholar 

  22. J. Frenkel, Kinetic Theory of Liquids (Clarendon Press, Oxford, 1946).

    MATH  Google Scholar 

  23. I.Z. Fisher, Statistical Theory of Liqids (Chicago University, Chicago, 1964).

    Google Scholar 

  24. D. Eizenberg and W. Kautzmann, The Structure and Properties of Water (Oxford University Press, Oxford, 1969).

    Google Scholar 

  25. K. Ramasesha, S.T. Roberts, R.A. Nicodemus, A. Mandal, and A. Tokmakoff, “Ultrafast 2D IR Anisotropy of Water Reveals Reorientation During Hydrogen-Bond Switching,” J. Chem. Phys. 135, 054509 (2011).

    Article  ADS  Google Scholar 

  26. A. Von Hippel, “The Dielectric Relaxation Spectra of Water, Ice, and Aqueous Solutions, and Their Interpretation. 1. Critical Survey of the Status-Quo for Water,” IEEE Trans. Electr. Insul. 23(5) 801 (1988).

    Article  Google Scholar 

  27. A. Von Hippel, “The Dielectric Relaxation Spectra of Water, Ice, and Aqueous Solutions, and Their Interpretation. 2. Tentative Interpretation of the Relaxation Spectrum of Water in the Time and Frequency Domain,” IEEE Trans. Electr. Insul. 23(5) 817 (1988).

    Article  Google Scholar 

  28. R. Buchner, J. Barthel, and J. Stauber, “The Dielectric Relaxation of Water between 0°C and 35°C,” Chem. Phys. Lett. 306, 57 (1999).

    Article  ADS  Google Scholar 

  29. U. Møller, D. Cooke, K. Tanaka, and P. Jepsen, “Terahertz Reflection Spectroscopy of Debye Relaxation in Polar Liquids,” J. Opt. Soc. Am. B. 26, A113 (2009).

    Article  Google Scholar 

  30. H. Yada, M. Nagai, and K. Tanakp, “Origin of the Fast Relaxation Component of Water and Heavy Water Revealed by Terahertz Time-Domain Attenuated Total Reflection Spectroscopy,” Chem. Phys. Lett. 464, 166 (2008).

    Article  ADS  Google Scholar 

  31. N.V. Penkov, N.E. Shvirst, V.A. Yashin, and E.E. Fesenko, “On Singularities of Molecular Relaxation in Water Solutions,” Biophysics. 58(6) 731 (2013).

    Article  Google Scholar 

  32. W.H. Brandeburgo, S.T. van der Post, and E.J. Meijerab, “On the Slowdown Mechanism of Water Dynamics Around Small Amphiphiles,” Phys. Chem. Chem. Phys. 17(38) 24968 (2015).

    Article  Google Scholar 

  33. R.F. Pawula, “The Probability Density and Level-Crossings of First Order Nonlinear Systems Driven by the Random Telegraph Signal,” Int. J. Control. 25, 283 (1977).

    Article  Google Scholar 

  34. K. Kitahara, W. Horsthemke, and R. Lefever, “Coloured-Noise-Indused Transitions: Exact Results for External Dichotomous Markovian Noise,” Phys. Lett. A. 70, 377 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  35. K. Kitahara, W. Horsthemke, R. Lefever, and Y. Inaba, “Phase Diagram of Noise Induced Transitions. Exact Results for a Class of External Coloured Noise,” Prog. Theor. Phys. 64, 1233 (1980).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. W. Horsthemke and R. Lefever, Noise-Induced Transitions (Springer-Verlag, Berlin, Hidelberg, N.Y., Tokyo, 1984).

    MATH  Google Scholar 

  37. G.A. Lyakhov, “Lower Critical Point for Stratification of a Liquid Solution: Dependence on the Energy and Lifetime of Intermolecular Bonds,” JETP Lett. 60, 99 (1994).

    ADS  Google Scholar 

  38. A.A. Sobyanin, “General Properties of Systems with a “Double” Critical Point,” Sov. Phys.-Usp. 29, 570 (1986).

    Article  ADS  Google Scholar 

  39. I.L. Fabelinskii, S.V. Krivokhizha, and L.L. Chaikov, “Experimental Studies of Solutions with a “Double” Critical Point,” Sov. Phys.-Usp. 29, 572 (1986).

    Article  ADS  Google Scholar 

  40. K.V. Kovalenko, S.V. Krivokhizha, I.L. Fabelinskii, and L.L. Chaikov, “Some Features of Phase Transitions in Solutions with Two Critical Points,” Phys. Usp. 39(6) 635 (1996).

    Article  ADS  Google Scholar 

  41. N.B. Lyakhova, A.V. Shkirin, and G.A. Lyakhov, “Stochastic Approach to the Theory of Stratification of Water and Aqueous Solutions: A Model of Twinkling Hydrogen Bonds,” Phys. Wave Phenom. 24(2) 142 (2016) [DOI: 10.3103/S1541308X16020096].

    Article  ADS  Google Scholar 

  42. A.A. Vedenov, Physics of Solutions (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  43. L.D. Landau and E.M. Lifshitz, Course of Theoretical Physics. Vol. 10: Physical Kinetics (Pergamon, Oxford, 1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. F. Bunkin, G. A. Lyakhov, A. V. Shkirin, P. S. Ignatiev, A. V. Kobelev, N. V. Penkov or E. E. Fesenko Jr..

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bunkin, N.F., Lyakhov, G.A., Shkirin, A.V. et al. Mesodroplet Heterogeneity of Low-Concentration Aqueous Solutions of Polar Organic Compounds. Phys. Wave Phen. 27, 91–101 (2019). https://doi.org/10.3103/S1541308X19020031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X19020031

Navigation